-
Notifications
You must be signed in to change notification settings - Fork 0
/
bounds.py
714 lines (573 loc) · 24.1 KB
/
bounds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
# -*- coding: utf-8 -*-
"""
Functions to calculate and work with bounding boxes in Inkscape extensions.
Copyright (C) 2010 Blair Bonnett, blair.bonnett@gmail.com
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import gettext
_ = gettext.gettext
from math import sqrt, sin, cos, tan, radians, atan2, pi
import inkex
import simpletransform
import simplepath
# Module version information as per the sys module
version = '0.9.0 alpha 1'
version_info = (0, 9, 0, 'alpha', 1)
hexversion = 0x000900a1
class BoundingBox:
"""A class which represents a bounding box. It has four attributes
(left, right, bottom and top) which define the edges of the box, and
a number of functions to work with the box.
"""
def __init__(self, x0, x1, y0, y1):
"""
:param x1: The x-value representing one vertical edge of the box.
:param x2: The x-value representing the other vertical edge.
:param y1: The y-value representing one horizontal edge of the box.
:param y2: The y-value representing the other horizontal edge.
When creating the box, the constructor will automatically choose the
lower of the two x-values for the left edge and the higher for the
right. Similarly, the lower y-value is used for the bottom of the box
and the higher for the top of the box.
"""
self.left = min(x0, x1)
self.right = max(x0, x1)
self.bottom = min(y0, y1)
self.top = max(y0, y1)
def contains(self, point):
"""Check if the given point is contained with this box.
:param point: The point to check specified as a pair of numbers (x,y).
:return: True or False.
"""
if point[0] < self.left or point[0] > self.right:
return False
if point[1] < self.bottom or point[1] > self.top:
return False
return True
def contains_x(self, x):
"""Check if the given x value is within the range of x values
encompassed by the box.
:param x: The x value to check.
:return: True or False
"""
if x < self.left or x > self.right:
return False
return True
def contains_y(self, y):
"""Check if the given y value is within the range of y values
encompassed by the box.
:param y: The y value to check.
:return: True or False
"""
if y < self.bottom or y > self.top:
return False
return True
def combine(self, box):
"""Combines this box with another bounding box. This extends the edges
of this box as necessary to encompass the contents of the other box.
:param box: The other box.
"""
self.left = min(self.left, box.left)
self.right = max(self.right, box.right)
self.bottom = min(self.bottom, box.bottom)
self.top = max(self.top, box.top)
def extend(self, point):
"""Extend the box as necessary to encompass the given point.
:param point: The point specified as a pair of numbers (x,y).
"""
self.left = min(self.left, point[0])
self.right = max(self.right, point[0])
self.bottom = min(self.bottom, point[1])
self.top = max(self.top, point[1])
def extend_x(self, x):
"""Extend the width of the box as necessary to include the given x
point.
:param x: The x point to include.
"""
self.left = min(self.left, x)
self.right = max(self.right, x)
def extend_y(self, y):
"""Extend the height of the box as necessary to include the given y
point.
:param y: The y point to include.
"""
self.bottom = min(self.bottom, y)
self.top = max(self.top, y)
def quadratic_bounding_box(p0, p1, p2, box=None):
"""Calculate the bounding box of a quadratic Bézier curve.
:param p0: The start point of the curve.
:param p1: The control point of the curve.
:param p2: The end point of the curve.
:param box: The current bounding box if available.
:return: A :class:`bounds.BoundingBox` encompassing the curve.
The three points defining the curve must be given as pairs of numbers
``(x,y)``.
If an existing BoundingBox is given in the ``box`` argument, it is extended
as necessary to encompass the curve and then returned. If no box is given,
a new one encompassing the curve is created and returned.
See the :ref:`bezier` page in the accompanying documentation for further
details on how Bézier curves are defined, and how their bounding boxes are
calculated.
"""
# Make sure the box encompasses the endpoints
if box is None:
box = BoundingBox(p0[0], p2[0], p0[1], p2[1])
else:
box.extend(p0)
box.extend(p2)
# All the points of a cubic Bézier curve lie in the convex hull of the
# three points. So if the box already includes p1, it contains the entire
# curve.
contains_x = box.contains_x(p1[0])
contains_y = box.contains_y(p1[1])
# If not already encompassed, find the extrema in the x direction
if not contains_x:
q0 = p1[0] - p0[0]
q1 = p2[0] - p1[0]
t = q0 / (q0 - q1)
if t > 0.0 and t < 1.0:
x = p0[0]*(1 - t)**2 + p1[0]*2*(1-t)*t + p2[0]*t**2
box.extend_x(x)
# If not already encompassed, find the extrema in the y direction
if not contains_y:
q0 = p1[1] - p0[1]
q1 = p2[1] - p1[1]
t = q0 / (q0 - q1)
if t > 0.0 and t < 1.0:
y = p0[1]*(1 - t)**2 + p1[1]*2*(1-t)*t + p2[1]*t**2
box.extend_y(y)
# And done
return box
def cubic_bounding_box(p0, p1, p2, p3, box=None):
"""Calculate the bounding box of a cubic Bézier curve.
:param p0: The start point of the curve.
:param p1: The first control point of the curve.
:param p2: The second control point of the curve.
:param p3: The end point of the curve.
:param box: The current bounding box if available.
:return: A :class:`bounds.BoundingBox` encompassing the curve.
The four points defining the curve must be given as pairs of numbers
``(x,y)``.
If an existing BoundingBox is given in the ``box`` argument, it is extended
as necessary to encompass the curve and then returned. If no box is given,
a new one encompassing the curve is created and returned.
See the :ref:`bezier` page in the accompanying documentation for further
details on how Bézier curves are defined, and how their bounding boxes are
calculated.
"""
# Make sure the box encompasses the endpoints
if box is None:
box = BoundingBox(p0[0], p3[0], p0[1], p3[1])
else:
box.extend(p0)
box.extend(p3)
# All the points of a cubic Bézier curve lie in the convex hull of the
# four points. So if the box already includes p1 and p2, it contains the
# entire curve, and thus we can avoid calculating the extrema.
contains_x = box.contains_x(p1[0]) and box.contains_x(p2[0])
contains_y = box.contains_y(p1[1]) and box.contains_y(p2[1])
# Helper function to calculate the extrema values for the given points.
# Used since identical logic is required to calculate both x and y extrema.
def extrema_values(p0, p1, p2, p3):
# Values for the quadratic formula
# Note a is actually 2a - it is always used as 2a or 4a so this reduces
# the number of computations.
a = 6*(p1-p0) - 12*(p2-p1) + 6*(p3-p2)
b = -6*(p1-p0) + 6*(p2-p1)
c = 3*(p1-p0)
# Check the discriminant - solutions must be real
discriminant = b**2 - (2*a*c)
if discriminant < 0:
return []
# Lambda function to calculate value from location
bezier = lambda t: p0*(1-t)**3 + 3*p1*t*(1-t)**2 + 3*p2*(1-t)*t**2 + p3*t**3
# Value of -b/2a is used repeatedly
ba = -b / a
# Single (repeated) real value
if discriminant == 0:
t = ba
if t > 0.0 and t < 1.0:
return [bezier(t)]
else:
return []
# Pair of values
vals = []
discriminant = sqrt(discriminant) / a
t = ba + discriminant
if t > 0.0 and t < 1.0:
vals.append(bezier(t))
t = ba - discriminant
if t > 0.0 and t < 1.0:
vals.append(bezier(t))
return vals
# Calculate the extent of the curve in the x-direction
if not contains_x:
vals = extrema_values(p0[0], p1[0], p2[0], p3[0])
for x in vals:
box.extend_x(x)
# Calculate the extent of the curve in the y-direction
if not contains_y:
vals = extrema_values(p0[1], p1[1], p2[1], p3[1])
for y in vals:
box.extend_y(y)
# And done
return box
def elliptical_arc_bounding_box(start, rx, ry, rotation, large_arc, sweep, end,
box=None):
"""Compute the bounding box for an SVG elliptical arc.
:param start: The start point of the arc.
:param rx: The semi-major (x) radius of the arc.
:param ry: The semi-minor (y) radius of the arc.
:param rotation: The angle at which the x-axis of the arc is rotated from
the x-axis of the image.
:param large_arc: If the angle swept by the arc is greater than 180 degrees.
:param sweep: Which direction the arc is swept in.
:param end: The end point of the arc.
:param box: The current bounding box if available.
:return: A :class:`bounds.BoundingBox` encompassing the arc.
One of the types of segments available for use in an SVG path is the
elliptical arc. This is largely defined from the start and end points, and
the semi-major and semi-minor radii. This gives four possible arcs; the
``large_arc`` and ``sweep`` flags set which arc is used. If ``sweep`` is
zero, the arg is swept through decreasing angles; otherwise it is swept
through increasing angles. If ``large_arc`` is zero, the arc will span 180
degrees or less; otherwise, it will be greater than 180 degrees. Finally,
the x-axis of the arc can be rotated from the x-axis of the image; the
angle it is rotated at (in degrees) is given by the ``rotation`` parameter.
This function calculates the bounding box necessary to contain an
elliptical arc. If an existing BoundingBox is given in the ``box``
argument, it is extended as necessary to encompass the arc and then
returned. If no box is given, a new one encompassing the arc is created and
returned.
As per the SVG 1.1 specification, out-of-range parameters are handled as
follows:
* If the start and end points are the same, the arc is not drawn. In this
case, the value of the ``box`` parameter (an existing bounding box or
``None``) is returned.
* If either ``rx`` or ``ry`` is zero, the arc is treated as a straight line
segment.
* If either ``rx`` or ``ry`` are negative, the absolute value is used as
the corresponding radius.
* If ``rx``, ``ry`` and ``rotation`` are such that the ellipse is not big
enough to reach from the start to the end, the ellipse is scaled
uniformly until it can reach.
* Any non-zero value for either ``large_arc`` or ``sweep`` is treated as if
the value ``1`` was given.
See the :ref:`elliptarc` page in the accompanying documentation for further
details on how elliptical arcs are defined, and how their bounding boxes
are calculated.
"""
# If the endpoints are the same, the elliptical arc will not be drawn.
if start == end:
return box
# Ensure the endpoints are in the box.
if box is None:
box = BoundingBox(start[0], end[0], start[1], end[1])
else:
box.extend(start)
box.extend(end)
# If either radius is zero, it is treated as a straight line. As we already
# added the endpoints, our work here is done.
if rx == 0 or ry == 0:
return box
# Make sure the radii are positive.
if rx < 0:
rx = -rx
if ry < 0:
ry = -ry
# Ensure the flags to boolean values. As per the SVG 1.1 specification,
# non-zero values for large_arc or sweep are treated as true.
if large_arc != 0:
large_arc = True
if sweep != 0:
sweep = True
# Convert rotation angle to radians as this is what the Python
# trigonometric functions work with. Also pre-compute the sine and cosine
# of the angle.
rotation = radians(rotation)
sin_rotation = sin(rotation)
cos_rotation = cos(rotation)
# Unpack the start and end points.
x1, y1 = start
x2, y2 = end
# Transform the origin to the midpoint of the line joining the start and
# end points.
xm = (cos_rotation * (x1 - x2)/2.0) + (sin_rotation * (y1 - y2)/2.0)
ym = -(sin_rotation * (x1 - x2)/2.0) + (cos_rotation * (y1 - y2)/2.0)
# Pre-square some values.
rx2 = rx**2
ry2 = ry**2
xm2 = xm**2
ym2 = ym**2
# Numerator of the root used to calculated the transformed centre.
numerator = rx2*ry2 - rx2*ym2 - ry2*xm2
# If the numerator is negative, there are no solutions for the centre point
# (i.e., the radii are not large enough to join the start and end). Per the
# SVG 1.1 specification, we increase the radii to obtain a solution.
if numerator < 0.0:
s = sqrt(1.0 - numerator/(rx2*ry2))
rx = rx * s
ry = ry * s
rx2 = rx**2
ry2 = ry**2
root = 0.0
# Radii were large enough
else:
if large_arc == sweep:
root = -1 * sqrt(numerator/(rx2*ym2 + ry2*xm2))
else:
root = sqrt(numerator/(rx2*ym2 + ry2*xm2))
# Calculate the transformed centre
cxprime = (root * rx * ym)/ry
cyprime = -(root * ry * xm)/rx
# Calculate the centre
cx = (cos_rotation * cxprime) - (sin_rotation * cyprime) + (x1 + x2)/2.0
cy = (sin_rotation * cxprime) + (cos_rotation * cyprime) + (y1 + y2)/2.0
# Function to calculate the angle between two vectors mod 360 degrees.
def angle_between_vectors(a, b):
atana = atan2(a[1], a[0])
atanb = atan2(b[1], b[0])
if atanb >= atana:
return atanb - atana;
return (2 * pi) - (atana - atanb);
# Calculate the start angle and angle the arc sweeps through
theta1 = angle_between_vectors((1.0, 0.0), ((xm - cxprime)/rx, (ym - cyprime)/ry))
dtheta = angle_between_vectors(((xm - cxprime)/rx, (ym - cyprime)/ry),
((-xm - cxprime)/rx, (-ym - cyprime)/ry))
# Make sure the sweep angle is in the correct range based upon the sweep
# flag.
if not sweep and dtheta > 0:
dtheta = dtheta - (2.0 * pi);
elif sweep and dtheta < 0:
dtheta = dtheta + (2.0 * pi);
# Convert to start and end angles in the range [-pi, pi] as this is the
# region atan2 will return extrema locations in.
if theta1 > pi:
start_angle = theta1 - (2*pi)
else:
start_angle = theta1
theta2 = start_angle + dtheta
if theta2 > pi:
end_angle = theta2 - (2*pi)
elif theta2 < -pi:
end_angle = theta2 + (2*pi)
else:
end_angle = theta2
# Helper function to check if the arc sweeps over the given angle.
def contains_angle(t):
if sweep:
if start_angle < end_angle:
return not (t < start_angle or t > end_angle)
else:
return not (t < start_angle and t > end_angle)
else:
if start_angle > end_angle:
return not (t > start_angle or t < end_angle)
else:
return not (t > start_angle and t < end_angle)
# Calculate the angle of the first maximas
thetax = atan2(-ry * tan(rotation), rx)
thetay = atan2(ry, rx * tan(rotation))
# The second maximas will be pi radians away
if thetax < 0:
xangles = [thetax, thetax + pi]
else:
xangles = [thetax, thetax - pi]
if thetay < 0:
yangles = [thetay, thetay + pi]
else:
yangles = [thetay, thetay - pi]
# Lambda functions to get the x or y value of the arc at a given angle
fx = lambda t: cx + (rx * cos(t) * cos_rotation) - (ry * sin(t) * sin_rotation)
fy = lambda t: cy + (rx * cos(t) * sin_rotation) + (ry * sin(t) * cos_rotation)
# Extend the box to include any extrema swept by the arc
for t in xangles:
if contains_angle(t):
box.extend_x(fx(t))
for t in yangles:
if contains_angle(t):
box.extend_y(fy(t))
# And done
return box
def path_bounding_box(path, box=None):
"""Compute the bounding box for an SVG path.
:param path: The XML node defining the path.
:param box: The existing :class:`bounds.BoundingBox` if available.
:return: A :class:`bounds.BoundingBox` encompassing the path.
SVG paths are a collection of various types of segments:
* Straight lines
* Quadratic Bézier curves
* Cubic Bézier curves
* Elliptical arcs
This function splits the path into its segments, calculates the bounding
box for each segment and combines them to get the bounding box of the path.
If an existing bounding box is given in the ``box`` parameter, it is
extended to encompass the path and returned. Otherwise, a new bounding box
is created and returned.
"""
# Get the transform
transform = path.get('transform', None)
if transform:
transform = simpletransform.parseTransform(transform)
# Parse the path details.
# Note that when parsing all path segments are converted to absolute
# coordinates. It also converts H and V segments to L, S segments to C and
# T segments to Q.
parsed = simplepath.parsePath(path.get('d'))
# Starting point
current = parsed[0][1]
if transform:
simpletransform.applyTransformToPoint(transform, current)
objbox = BoundingBox(current[0], current[0], current[1], current[1])
# Loop through each segment.
for type,params in parsed[1:]:
# End of path
if type == 'Z':
break
# Line or move to
elif type == 'L' or type == 'M':
point = params
if transform:
simpletransform.applyTransformToPoint(transform, point)
objbox.extend(point)
current = point
# Cubic Bézier curve
elif type == 'C':
p1 = params[0:2]
p2 = params[2:4]
p3 = params[4:6]
if transform:
simpletransform.applyTransformToPoint(transform, p1)
simpletransform.applyTransformToPoint(transform, p2)
simpletransform.applyTransformToPoint(transform, p3)
objbox = cubic_bounding_box(current, p1, p2, p3, objbox)
current = p3
# Quadratic Bézier curve
elif type == 'Q':
p1 = params[0:2]
p2 = params[2:4]
if transform:
simpletransform.applyTransformToPoint(transform, p1)
simpletransform.applyTransformToPoint(transform, p2)
objbox = quadratic_bounding_box(current, p1, p2, objbox)
current = p2
# Elliptical arc
elif type == 'A':
rx, ry, rotation, large_arc, sweep = params[0:5]
end = params[5:7]
if transform:
simpletransform.applyTransformToPoint(transform, end)
objbox = elliptical_arc_bounding_box(current, rx, ry, rotation,
large_arc, sweep, end, objbox)
current = end
# Unknown segment type
else:
raise Exception(_('Unknown path segment type %s.' % type))
# Returnt the appropriate box
if box is None:
return objbox
else:
return box.combine(objbox)
def rect_bounding_box(rect, box=None):
"""Get the bounding box of an SVG rectangle.
:param rect: The XML node defining the object.
:param box: The existing :class:`bounds.BoundingBox` if available.
:return: A :class:`bounds.BoundingBox` encompassing the object.
"""
# Get the position and dimension of the rectangle
x = float(rect.get('x', 0))
y = float(rect.get('y', 0))
width = float(rect.get('width'))
height = float(rect.get('height'))
# Width and height can't be negative
if width < 0:
raise ValueError(_('Width of rect object cannot be negative.'))
if height < 0:
raise ValueError(_('Height of rect object cannot be negative.'))
# Width or height of zero disables rendering
if width == 0 or height == 0:
return box
# Create the four points
bl = [x, y]
br = [x + width, y]
tr = [x + width, y + height]
tl = [x, y + height]
# Get the transform
transform = rect.get('transform', None)
if transform:
transform = simpletransform.parseTransform(transform)
simpletransform.applyTransformToPoint(transform, bl)
simpletransform.applyTransformToPoint(transform, br)
simpletransform.applyTransformToPoint(transform, tr)
simpletransform.applyTransformToPoint(transform, tl)
# Extend the box
if box is None:
box = BoundingBox(bl[0], bl[0], bl[1], bl[1])
else:
box.extend(bl)
box.extend(br)
box.extend(tr)
box.extend(tl)
# And done.
return box
def object_bounding_box(obj, box=None):
"""Get the bounding box of an SVG object.
:param obj: The XML node defining the object.
:param box: The existing :class:`bounds.BoundingBox` if available.
:return: A :class:`bounds.BoundingBox` encompassing the object.
SVG images are constructed of a number of primitive objects (paths,
rectangles, circles, groups etc.). This function takes an arbitrary object,
determines what type of object is, and calculates the bounding box
correspondingly.
If an existing bounding box is given in the ``box`` parameter, it is
extended to encompass the object and returned. Otherwise, a new bounding
box is created and returned.
Currently, this function can only handle ``path`` and ``rect`` objects.
"""
if obj.tag == 'path' or obj.tag == inkex.addNS('path', 'svg'):
objbox = path_bounding_box(obj, box)
elif obj.tag in ['rect', inkex.addNS('rect', 'svg')]:
objbox = rect_bounding_box(obj, box)
else:
objbox = BoundingBox(0, 0, 0, 0)
return objbox
def draw_bounding_box(obj, style=None, replace=False):
"""Draws the bounding box of the given object.
:param obj: The XML node representing the object.
:param style: The SVG style to draw the bounding box with.
:param replace: Whether to replace the object with its bounding box.
This function draws the bounding box around the given object. If no style
is specified, the style of the object is used to draw the bounding box. If
``replace`` is ``True``, the object is removed from the image and is
replaced by its bounding box. If it is ``False``, the bounding box is drawn
on top of the object.
"""
# Default to the style of the given object
if style is None:
style = obj.get('style')
# Get the bounding box
box = object_bounding_box(obj)
# Convert the bounding box to path data
points = (box.left, box.bottom, box.right, box.bottom,
box.right, box.top, box.left, box.top)
d = 'M%f %f %f %f %f %f %f %f z' % points
# Create the new node
boxobj = inkex.etree.Element('path')
boxobj.set('style', style)
boxobj.set('d', d)
# Get the parent of the object
parent = obj.getparent()
# Insert the box outline
parent.insert(parent.index(obj) + 1, boxobj)
# Remove the object if desired
if replace:
parent.remove(node)