forked from gorgonia/tensor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
api_arith.go
504 lines (470 loc) · 15 KB
/
api_arith.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
package tensor
import (
"github.com/pkg/errors"
)
// exported API for arithmetics and the stupidly crazy amount of overloaded semantics
// Add performs a pointwise a+b. a and b can either be float64 or Tensor
//
// If both operands are Tensor, shape is checked first.
// Even though the underlying data may have the same size (say (2,2) vs (4,1)), if they have different shapes, it will error out.
//
// Add performs elementwise addition on the Tensor(s). These operations are supported:
// Add(*Dense, scalar)
// Add(scalar, *Dense)
// Add(*Dense, *Dense)
// If the Unsafe flag is passed in, the data of the first tensor will be overwritten
func Add(a, b interface{}, opts ...FuncOpt) (retVal Tensor, err error) {
var adder Adder
var oe standardEngine
var ok bool
switch at := a.(type) {
case Tensor:
oe = at.standardEngine()
switch bt := b.(type) {
case Tensor:
if oe != nil {
return oe.Add(at, bt, opts...)
}
if oe = bt.standardEngine(); oe != nil {
return oe.Add(at, bt, opts...)
}
if adder, ok = at.Engine().(Adder); ok {
return adder.Add(at, bt, opts...)
}
if adder, ok = bt.Engine().(Adder); ok {
return adder.Add(at, bt, opts...)
}
return nil, errors.New("Neither engines of either operand support Add")
default:
if oe != nil {
return oe.AddScalar(at, bt, true, opts...)
}
if adder, ok = at.Engine().(Adder); ok {
return adder.AddScalar(at, bt, true, opts...)
}
return nil, errors.New("Operand A's engine does not support Add")
}
default:
switch bt := b.(type) {
case Tensor:
if oe = bt.standardEngine(); oe != nil {
return oe.AddScalar(bt, at, false, opts...)
}
if adder, ok = bt.Engine().(Adder); ok {
return adder.AddScalar(bt, at, false, opts...)
}
return nil, errors.New("Operand B's engine does not support Add")
default:
return nil, errors.Errorf("Cannot perform Add of %T and %T", a, b)
}
}
panic("Unreachable")
}
// Sub performs elementwise subtraction on the Tensor(s). These operations are supported:
// Sub(*Dense, scalar)
// Sub(scalar, *Dense)
// Sub(*Dense, *Dense)
// If the Unsafe flag is passed in, the data of the first tensor will be overwritten
func Sub(a, b interface{}, opts ...FuncOpt) (retVal Tensor, err error) {
var suber Suber
var oe standardEngine
var ok bool
switch at := a.(type) {
case Tensor:
oe = at.standardEngine()
switch bt := b.(type) {
case Tensor:
if oe != nil {
return oe.Sub(at, bt, opts...)
}
if oe = bt.standardEngine(); oe != nil {
return oe.Sub(at, bt, opts...)
}
if suber, ok = at.Engine().(Suber); ok {
return suber.Sub(at, bt, opts...)
}
if suber, ok = bt.Engine().(Suber); ok {
return suber.Sub(at, bt, opts...)
}
return nil, errors.New("Neither engines of either operand support Sub")
default:
if oe != nil {
return oe.SubScalar(at, bt, true, opts...)
}
if suber, ok = at.Engine().(Suber); ok {
return suber.SubScalar(at, bt, true, opts...)
}
return nil, errors.New("Operand A's engine does not support Sub")
}
default:
switch bt := b.(type) {
case Tensor:
if oe = bt.standardEngine(); oe != nil {
return oe.SubScalar(bt, at, false, opts...)
}
if suber, ok = bt.Engine().(Suber); ok {
return suber.SubScalar(bt, at, false, opts...)
}
return nil, errors.New("Operand B's engine does not support Sub")
default:
return nil, errors.Errorf("Cannot perform Sub of %T and %T", a, b)
}
}
panic("Unreachable")
}
// Mul performs elementwise multiplication on the Tensor(s). These operations are supported:
// Mul(*Dense, scalar)
// Mul(scalar, *Dense)
// Mul(*Dense, *Dense)
// If the Unsafe flag is passed in, the data of the first tensor will be overwritten
func Mul(a, b interface{}, opts ...FuncOpt) (retVal Tensor, err error) {
var muler Muler
var oe standardEngine
var ok bool
switch at := a.(type) {
case Tensor:
oe = at.standardEngine()
switch bt := b.(type) {
case Tensor:
if !bt.Shape().IsScalar() && !at.Shape().IsScalar() { // non-scalar Tensor multiplication
if oe != nil {
return oe.Mul(at, bt, opts...)
}
if oe = bt.standardEngine(); oe != nil {
return oe.Mul(at, bt, opts...)
}
if muler, ok = at.Engine().(Muler); ok {
return muler.Mul(at, bt, opts...)
}
if muler, ok = bt.Engine().(Muler); ok {
return muler.Mul(at, bt, opts...)
}
return nil, errors.New("Neither engines of either operand support Mul")
} else { // one of the operands is a scalar
var leftTensor bool
if at.Shape().IsScalar() {
leftTensor = false // a Scalar-Tensor * b Tensor
} else {
leftTensor = true // a Tensor * b Scalar-Tensor
}
if oe != nil {
return oe.MulScalar(at, bt, leftTensor, opts...)
}
if oe = bt.standardEngine(); oe != nil {
return oe.MulScalar(at, bt, leftTensor, opts...)
}
if muler, ok = at.Engine().(Muler); ok {
return muler.MulScalar(at, bt, leftTensor, opts...)
}
if muler, ok = bt.Engine().(Muler); ok {
return muler.MulScalar(at, bt, leftTensor, opts...)
}
return nil, errors.New("Neither engines of either operand support Mul")
}
default: // a Tensor * b interface
if oe != nil {
return oe.MulScalar(at, bt, true, opts...)
}
if muler, ok = at.Engine().(Muler); ok {
return muler.MulScalar(at, bt, true, opts...)
}
return nil, errors.New("Operand A's engine does not support Mul")
}
default:
switch bt := b.(type) {
case Tensor: // b Tensor * a interface
if oe = bt.standardEngine(); oe != nil {
return oe.MulScalar(bt, at, false, opts...)
}
if muler, ok = bt.Engine().(Muler); ok {
return muler.MulScalar(bt, at, false, opts...)
}
return nil, errors.New("Operand B's engine does not support Mul")
default: // b interface * a interface
return nil, errors.Errorf("Cannot perform Mul of %T and %T", a, b)
}
}
panic("Unreachable")
}
// Div performs elementwise division on the Tensor(s). These operations are supported:
// Div(*Dense, scalar)
// Div(scalar, *Dense)
// Div(*Dense, *Dense)
// If the Unsafe flag is passed in, the data of the first tensor will be overwritten
func Div(a, b interface{}, opts ...FuncOpt) (retVal Tensor, err error) {
var diver Diver
var oe standardEngine
var ok bool
switch at := a.(type) {
case Tensor:
oe = at.standardEngine()
switch bt := b.(type) {
case Tensor:
if oe != nil {
return oe.Div(at, bt, opts...)
}
if oe = bt.standardEngine(); oe != nil {
return oe.Div(at, bt, opts...)
}
if diver, ok = at.Engine().(Diver); ok {
return diver.Div(at, bt, opts...)
}
if diver, ok = bt.Engine().(Diver); ok {
return diver.Div(at, bt, opts...)
}
return nil, errors.New("Neither engines of either operand support Div")
default:
if oe != nil {
return oe.DivScalar(at, bt, true, opts...)
}
if diver, ok = at.Engine().(Diver); ok {
return diver.DivScalar(at, bt, true, opts...)
}
return nil, errors.New("Operand A's engine does not support Div")
}
default:
switch bt := b.(type) {
case Tensor:
if oe = bt.standardEngine(); oe != nil {
return oe.DivScalar(bt, at, false, opts...)
}
if diver, ok = bt.Engine().(Diver); ok {
return diver.DivScalar(bt, at, false, opts...)
}
return nil, errors.New("Operand B's engine does not support Div")
default:
return nil, errors.Errorf("Cannot perform Div of %T and %T", a, b)
}
}
panic("Unreachable")
}
// Pow performs elementwise exponentiation on the Tensor(s). These operations are supported:
// Pow(*Dense, scalar)
// Pow(scalar, *Dense)
// Pow(*Dense, *Dense)
// If the Unsafe flag is passed in, the data of the first tensor will be overwritten
func Pow(a, b interface{}, opts ...FuncOpt) (retVal Tensor, err error) {
var power Power
var oe standardEngine
var ok bool
switch at := a.(type) {
case Tensor:
oe = at.standardEngine()
switch bt := b.(type) {
case Tensor:
if oe != nil {
return oe.Pow(at, bt, opts...)
}
if oe = bt.standardEngine(); oe != nil {
return oe.Pow(at, bt, opts...)
}
if power, ok = at.Engine().(Power); ok {
return power.Pow(at, bt, opts...)
}
if power, ok = bt.Engine().(Power); ok {
return power.Pow(at, bt, opts...)
}
return nil, errors.New("Neither engines of either operand support Pow")
default:
if oe != nil {
return oe.PowScalar(at, bt, true, opts...)
}
if power, ok = at.Engine().(Power); ok {
return power.PowScalar(at, bt, true, opts...)
}
return nil, errors.New("Operand A's engine does not support Pow")
}
default:
switch bt := b.(type) {
case Tensor:
if oe = bt.standardEngine(); oe != nil {
return oe.PowScalar(bt, at, false, opts...)
}
if power, ok = bt.Engine().(Power); ok {
return power.PowScalar(bt, at, false, opts...)
}
return nil, errors.New("Operand B's engine does not support Pow")
default:
return nil, errors.Errorf("Cannot perform Pow of %T and %T", a, b)
}
}
panic("Unreachable")
}
// Mod performs elementwise exponentiation on the Tensor(s). These operations are supported:
// Mod(*Dense, scalar)
// Mod(scalar, *Dense)
// Mod(*Dense, *Dense)
// If the Unsafe flag is passed in, the data of the first tensor will be overwritten
func Mod(a, b interface{}, opts ...FuncOpt) (retVal Tensor, err error) {
var moder Moder
var oe standardEngine
var ok bool
switch at := a.(type) {
case Tensor:
oe = at.standardEngine()
switch bt := b.(type) {
case Tensor:
if oe != nil {
return oe.Mod(at, bt, opts...)
}
if oe = bt.standardEngine(); oe != nil {
return oe.Mod(at, bt, opts...)
}
if moder, ok = at.Engine().(Moder); ok {
return moder.Mod(at, bt, opts...)
}
if moder, ok = bt.Engine().(Moder); ok {
return moder.Mod(at, bt, opts...)
}
return nil, errors.New("Neither engines of either operand support Mod")
default:
if oe != nil {
return oe.ModScalar(at, bt, true, opts...)
}
if moder, ok = at.Engine().(Moder); ok {
return moder.ModScalar(at, bt, true, opts...)
}
return nil, errors.New("Operand A's engine does not support Mod")
}
default:
switch bt := b.(type) {
case Tensor:
if oe = bt.standardEngine(); oe != nil {
return oe.ModScalar(bt, at, false, opts...)
}
if moder, ok = bt.Engine().(Moder); ok {
return moder.ModScalar(bt, at, false, opts...)
}
return nil, errors.New("Operand B's engine does not support Mod")
default:
return nil, errors.Errorf("Cannot perform Mod of %T and %T", a, b)
}
}
panic("Unreachable")
}
// Dot is a highly opinionated API for performing dot product operations on two *Denses, a and b.
// This function is opinionated with regard to the vector operations because of how it treats operations with vectors.
// Vectors in this package comes in two flavours - column or row vectors. Column vectors have shape (x, 1), while row vectors have shape (1, x).
//
// As such, it is easy to assume that performing a linalg operation on vectors would follow the same rules (i.e shapes have to be aligned for things to work).
// For the most part in this package, this is true. This function is one of the few notable exceptions.
//
// Here I give three specific examples of how the expectations of vector operations will differ.
// Given two vectors, a, b with shapes (4, 1) and (4, 1), Dot() will perform an inner product as if the shapes were (1, 4) and (4, 1). This will result in a scalar value
// Given matrix A and vector b with shapes (2, 4) and (1, 4), Dot() will perform a matrix-vector multiplication as if the shapes were (2,4) and (4,1). This will result in a column vector with shape (2,1)
// Given vector a and matrix B with shapes (3, 1) and (3, 2), Dot() will perform a matrix-vector multiplication as if it were Bᵀ * a
//
// The main reason why this opinionated route was taken was due to the author's familiarity with NumPy, and general laziness in translating existing machine learning algorithms
// to fit the API of the package.
func Dot(x, y Tensor, opts ...FuncOpt) (retVal Tensor, err error) {
if xdottir, ok := x.Engine().(Dotter); ok {
return xdottir.Dot(x, y, opts...)
}
if ydottir, ok := y.Engine().(Dotter); ok {
return ydottir.Dot(x, y, opts...)
}
return nil, errors.New("Neither x's nor y's engines support Dot")
}
// FMA performs Y = A * X + Y.
func FMA(a Tensor, x interface{}, y Tensor) (retVal Tensor, err error) {
if xTensor, ok := x.(Tensor); ok {
if oe := a.standardEngine(); oe != nil {
return oe.FMA(a, xTensor, y)
}
if oe := xTensor.standardEngine(); oe != nil {
return oe.FMA(a, xTensor, y)
}
if oe := y.standardEngine(); oe != nil {
return oe.FMA(a, xTensor, y)
}
if e, ok := a.Engine().(FMAer); ok {
return e.FMA(a, xTensor, y)
}
if e, ok := xTensor.Engine().(FMAer); ok {
return e.FMA(a, xTensor, y)
}
if e, ok := y.Engine().(FMAer); ok {
return e.FMA(a, xTensor, y)
}
} else {
if oe := a.standardEngine(); oe != nil {
return oe.FMAScalar(a, x, y)
}
if oe := y.standardEngine(); oe != nil {
return oe.FMAScalar(a, x, y)
}
if e, ok := a.Engine().(FMAer); ok {
return e.FMAScalar(a, x, y)
}
if e, ok := y.Engine().(FMAer); ok {
return e.FMAScalar(a, x, y)
}
}
return Mul(a, x, WithIncr(y))
}
// MatMul performs matrix-matrix multiplication between two Tensors
func MatMul(a, b Tensor, opts ...FuncOpt) (retVal Tensor, err error) {
if a.Dtype() != b.Dtype() {
err = errors.Errorf(dtypeMismatch, a.Dtype(), b.Dtype())
return
}
switch at := a.(type) {
case *Dense:
bt := b.(*Dense)
return at.MatMul(bt, opts...)
}
panic("Unreachable")
}
// MatVecMul performs matrix-vector multiplication between two Tensors. `a` is expected to be a matrix, and `b` is expected to be a vector
func MatVecMul(a, b Tensor, opts ...FuncOpt) (retVal Tensor, err error) {
if a.Dtype() != b.Dtype() {
err = errors.Errorf(dtypeMismatch, a.Dtype(), b.Dtype())
return
}
switch at := a.(type) {
case *Dense:
bt := b.(*Dense)
return at.MatVecMul(bt, opts...)
}
panic("Unreachable")
}
// Inner finds the inner products of two vector Tensors. Both arguments to the functions are eexpected to be vectors.
func Inner(a, b Tensor) (retVal interface{}, err error) {
if a.Dtype() != b.Dtype() {
err = errors.Errorf(dtypeMismatch, a.Dtype(), b.Dtype())
return
}
switch at := a.(type) {
case *Dense:
bt := b.(*Dense)
return at.Inner(bt)
}
panic("Unreachable")
}
// Outer performs the outer product of two vector Tensors. Both arguments to the functions are expected to be vectors.
func Outer(a, b Tensor, opts ...FuncOpt) (retVal Tensor, err error) {
if a.Dtype() != b.Dtype() {
err = errors.Errorf(dtypeMismatch, a.Dtype(), b.Dtype())
return
}
switch at := a.(type) {
case *Dense:
bt := b.(*Dense)
return at.Outer(bt, opts...)
}
panic("Unreachable")
}
// Contract performs a contraction of given tensors along given axes
func Contract(a, b Tensor, aAxes, bAxes []int) (retVal Tensor, err error) {
if a.Dtype() != b.Dtype() {
err = errors.Errorf(dtypeMismatch, a.Dtype(), b.Dtype())
return
}
switch at := a.(type) {
case *Dense:
bt := b.(*Dense)
return at.TensorMul(bt, aAxes, bAxes)
default:
panic("Unreachable")
}
}