-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenerate_Data.py
36 lines (29 loc) · 1010 Bytes
/
Generate_Data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import os
import glob
import numpy
import cv2
imagePaths = []
# input images
for img in glob.glob("Data/*.jpg"): # folder train1 contains multiple dog and cat images in .jpg
imagePaths = list(glob.glob("Data/*.jpg"))
# Extract the image into vector
def image_vector(image, size=(128, 128)):
return cv2.resize(image, size).flatten()
# initialize the pixel intensities matrix, labels list
imagematrix = []
imagelabels = []
pixels = None
# Build image vector matrix
for (i, path) in enumerate(imagePaths):
# load the image and extract the class label, image intensities
image = cv2.imread(path)
label = path.split(os.path.sep)[-1].split(".")[0]
pixels = image_vector(image)
# update the images and labels matricies respectively
imagematrix.append(pixels)
imagelabels.append(label)
imagematrix = numpy.array(imagematrix)
imagelabels = numpy.array(imagelabels)
# save numpy arrays for future use
numpy.save("matrix.npy", imagematrix)
numpy.save("labels.npy", imagelabels)