Skip to content

Latest commit

 

History

History
55 lines (39 loc) · 1.94 KB

Vo.md

File metadata and controls

55 lines (39 loc) · 1.94 KB

MADMAX dataset

Go to Arches MADMAX dataset and download the sequences you want to evaluate. Extract the archives in such a way that you get the following folder structure:

  |- A_0
      |- ground_truth
      |- rect_left
      |- rect_right
      |- A-0_imu_data.csv
  |- A_1
...

We provide a script to establish an EuRoC like folder structure.

scripts/convert_madmax_to_euroc.py --dataset_path path/to/MADMAX/A-0

To run the visual odometry execute:

granite_vio --dataset-path path/to/MADMAX/A-0 --cam-calib data/madmax_calib_mono.json --dataset-type euroc --config-path data/madmax_config_mono.json --use-imu 0 --show-gui 1 --step-by-step 1

madmax_vio

KITTI dataset

teaser

We demonstrate the usage of the system with the KITTI dataset as an example.

Download the sequences (data_odometry_gray.zip) from the dataset and extract it.

# We assume you have extracted the sequences in ~/dataset_gray/sequences/
# Convert calibration to the granite format
granite_convert_kitti_calib.py -d ~/dataset_gray/sequences/00/

# If you want to convert calibrations for all sequences use the following command
for i in {00..21}; do granite_convert_kitti_calib.py -d ~/dataset_gray/sequences/$i/; done

Optionally you can also copy the provided ground-truth poses to poses.txt in the corresponding sequence.

To run the visual odometry execute the following command.

granite_vio --dataset-path ~/dataset_gray/sequences/00/ --cam-calib /work/kitti/dataset_gray/sequences/00/granite_calib.json --dataset-type kitti --config-path data/kitti_config.json --show-gui 1 --use-imu 0

magistrale1_vio

Other Datasets

Of course the VO can also be run on the VIO Datasets described in VioMapping