Go to Arches MADMAX dataset and download the sequences you want to evaluate. Extract the archives in such a way that you get the following folder structure:
|- A_0
|- ground_truth
|- rect_left
|- rect_right
|- A-0_imu_data.csv
|- A_1
...
We provide a script to establish an EuRoC like folder structure.
scripts/convert_madmax_to_euroc.py --dataset_path path/to/MADMAX/A-0
To run the visual odometry execute:
granite_vio --dataset-path path/to/MADMAX/A-0 --cam-calib data/madmax_calib_mono.json --dataset-type euroc --config-path data/madmax_config_mono.json --use-imu 0 --show-gui 1 --step-by-step 1
We demonstrate the usage of the system with the KITTI dataset as an example.
Download the sequences (data_odometry_gray.zip
) from the dataset and extract it.
# We assume you have extracted the sequences in ~/dataset_gray/sequences/
# Convert calibration to the granite format
granite_convert_kitti_calib.py -d ~/dataset_gray/sequences/00/
# If you want to convert calibrations for all sequences use the following command
for i in {00..21}; do granite_convert_kitti_calib.py -d ~/dataset_gray/sequences/$i/; done
Optionally you can also copy the provided ground-truth poses to poses.txt
in the corresponding sequence.
To run the visual odometry execute the following command.
granite_vio --dataset-path ~/dataset_gray/sequences/00/ --cam-calib /work/kitti/dataset_gray/sequences/00/granite_calib.json --dataset-type kitti --config-path data/kitti_config.json --show-gui 1 --use-imu 0
Of course the VO can also be run on the VIO Datasets described in VioMapping