-
Notifications
You must be signed in to change notification settings - Fork 2
/
IPC - Backup.py
864 lines (737 loc) · 36.8 KB
/
IPC - Backup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
import os
import matplotlib
import matplotlib.pyplot as plt
import tensorflow as tf # Version 1.0.0 (some previous versions are used in past commits)
from sklearn import metrics
import random
from random import randint
import argparse
import logging
import time
import struct
import operator
from imutils.video import WebcamVideoStream
import imutils
import cv2
import numpy as np
from tf_pose.estimator import TfPoseEstimator
from tf_pose.networks import get_graph_path, model_wh
from itertools import chain, count
from sklearn.neighbors import NearestNeighbors
from collections import defaultdict
import darknet.json as dk
import facerec.recognize as fr
# import deepface.deepface as df
n_steps = 5
# DATASET_PATH = "data/"
# DATASET_PATH = "data/Overlap_fixed/"
DATASET_PATH = "data/Overlap_fixed4/"
# DATASET_PATH = "data/Overlap_fixed4_separated/"
# <TODO> camera url
# 4 camera
# mode openpose dan kamera
# simpan gambar dan simpan mp4
# face tolerance
# alarm activation tombol
# setting security for type data threshold
LABELS = [
"GO_IN",
"GO_OUT",
"WALK_LEFT",
"WALK_RIGHT"
]
# CAMERA = [0, 2]
# CAMERA = [0]
CAMERA = ["rtsp://167.205.66.147:554/onvif1", "rtsp://167.205.66.148:554/onvif1", "rtsp://167.205.66.149:554/onvif1", "rtsp://167.205.66.150:554/onvif1"]
# ROTATE = [0, 0, 0, 0]
ROTATE = [180, 180, 180, 180]
class mainhuman_activity:
# Pre-processing for every image
def preprocess(raws, rots):
imgs = []
for img, rot in zip(raws, rots):
# img = cv2.resize(img, dsize=(256, 144), interpolation=cv2.INTER_CUBIC) # 16:9
img = cv2.resize(img, dsize=(512, 288), interpolation=cv2.INTER_CUBIC) # 16:9
# img = cv2.resize(img, dsize=(640, 480), interpolation=cv2.INTER_CUBIC) # 4:3
# img = cv2.resize(img, dsize=(320, 240), interpolation=cv2.INTER_CUBIC) # 4:3
# img = cv2.resize(img, dsize=(160, 120), interpolation=cv2.INTER_CUBIC) # 4:3
# img = imutils.rotate_bound(img, 90)
img = imutils.rotate_bound(img, rot)
imgs.append(img)
if len(imgs) == 1:
image = imgs[0]
if len(imgs) >= 2:
image = np.hstack((imgs[0], imgs[1]))
if len(imgs) == 4:
image2 = np.hstack((imgs[2], imgs[3]))
image = np.vstack((image, image2))
return image
def __init__(self, camera=CAMERA, rotate = ROTATE):
cams = [WebcamVideoStream(src=cam).start() for cam in camera]
imgs = []
for i, cam in enumerate(cams):
# cam.set(cv2.CAP_PROP_BUFFERSIZE, 1) # Internal buffer will now store only x frames
img = cam.read()
imgs.append(img)
image = mainhuman_activity.preprocess(imgs, rotate)
# h, w, c = image_raw.shape
# h2, w2, c2 = image2_raw.shape
# print(h, w, c, h2, w2, c2)
print("\n######################## Darknet")
dark = dk.darknet_recog()
print(dark.performDetect(image))
print("\n######################## Openpose")
opose = openpose_human(image)
print("\n######################## LSTM")
act = activity_human()
# print("\n######################## Deepface")
# dface = df.face_recog()
# print(dface.run(image))
print("\n######################## Facerec")
facer = fr.face_recog(face_dir="./facerec/face/")
act_labs = []
act_confs = []
# Main loop
try:
f = open(r'\\.\pipe\testing', 'r+b',0)
d = 0 # mode in communication
alarmmode = False # False mode deactive True mode active
mode = True # False normal mode True recognition mode
security_threshold = 0.5
face_tolerance = 0.6
while True:
# imgs = [mainhuman_activity.read2(cam) for cam in cams]
n = struct.unpack('I', f.read(4))[0] # Read str length
s = f.read(n).decode('ascii') # Read str
f.seek(0)
print ('Accept from C#', s)
if (s == 'AlarmDeactive'):
d = 7
elif (s == 'AlarmActive'):
d = 6
elif (s == 'FaceInput'):
d = 5
elif (s == 'Normal'):
d = 4
elif (s == 'Recognition'):
d = 3
elif (s == 'Start'):
d = 2
elif (s == 'Stop'):
d = 1
elif (s == 'Received'):
d = 0
else:
s='Go'
f.write(struct.pack('I', len(s)) + s.encode('ascii')) # Write str length and str
f.seek(0)
print ('Sending to C#:', s)
if (d == 7):
alarmmode = False # False mode deactive True mode active
s='Go'
f.write(struct.pack('I', len(s)) + s.encode('ascii')) # Write str length and str
f.seek(0)
print ('Sending to C#:', s)
elif (d == 6):
alarmmode = True # False mode deactive True mode active
s='Go'
f.write(struct.pack('I', len(s)) + s.encode('ascii')) # Write str length and str
f.seek(0)
print ('Sending to C#:', s)
elif (d == 5):
s='Go'
f.write(struct.pack('I', len(s)) + s.encode('ascii')) # Write str length and str
f.seek(0)
print ('Sending to C#:', s)
n = struct.unpack('I', f.read(4))[0] # Read str length
facename = f.read(n).decode('ascii') # Read str
f.seek(0)
print ('Accept from C#', facename)
imgs = []
img = cams[0].read()
imgs.append(img)
# for i, cam in enumerate(cams):
# # Decode the captured frames
# ret_val, img = cam.retrieve()
# imgs.append(img)
# Skip frame if there's nothing
if(imgs is [None]):
continue
image = mainhuman_activity.preprocess(imgs, rotate)
face_locs, face_names = facer.runinference(image, tolerance=face_tolerance, prescale=0.25, upsample=2)
# Facerec display
for (top, right, bottom, left), face in zip(face_locs, face_names):
print(face)
if (face == "Unknown"):
bounds = [4*left, 4*top, 4*right, 4*bottom]
image = image[bounds[1]:bounds[3], bounds[0]:bounds[2]]
cv2.imwrite('facerec/face/'+facename+'.jpg', image)
print("\n######################## Facerec")
s='Go'
f.write(struct.pack('I', len(s)) + s.encode('ascii')) # Write str length and str
f.seek(0)
print ('Sending to C#:', s)
elif (d == 4):
mode = False # False normal mode True recognition mode
s='Go'
f.write(struct.pack('I', len(s)) + s.encode('ascii')) # Write str length and str
f.seek(0)
print ('Sending to C#:', s)
elif (d == 3):
mode = True # False normal mode True recognition mode
s='Go'
f.write(struct.pack('I', len(s)) + s.encode('ascii')) # Write str length and str
f.seek(0)
print ('Sending to C#:', s)
elif (d == 2):
for i, cam in enumerate(cams):
# cam.set(cv2.CAP_PROP_BUFFERSIZE, 1) # Internal buffer will now store only x frames
cam.stop()
camera = []
rotate = []
s='Go'
f.write(struct.pack('I', len(s)) + s.encode('ascii')) # Write str length and str
f.seek(0)
print ('Sending to C#:', s)
n = struct.unpack('I', f.read(4))[0] # Read str length
camnumber = f.read(n).decode('ascii') # Read str
f.seek(0)
try:
cam_number = int(camnumber)
except ValueError:
pass
print ('Accept from C#', camnumber)
for x in range(cam_number):
s='Go'
f.write(struct.pack('I', len(s)) + s.encode('ascii')) # Write str length and str
f.seek(0)
print ('Sending to C#:', s)
n = struct.unpack('I', f.read(4))[0] # Read str length
camtemp = f.read(n).decode('ascii') # Read str
f.seek(0)
try:
camera.append(int(camtemp))
rotate.append(180)
except ValueError:
camera.append(camtemp)
rotate.append(180)
pass
print ('Accept from C#', camtemp)
s='Go'
f.write(struct.pack('I', len(s)) + s.encode('ascii')) # Write str length and str
f.seek(0)
print ('Sending to C#:', s)
n = struct.unpack('I', f.read(4))[0] # Read str length
securitythresholdtemp = f.read(n).decode('ascii') # Read str
f.seek(0)
if (securitythresholdtemp!=" "):
try:
security_threshold = float(securitythresholdtemp)
except ValueError:
pass
print ('Accept from C#', securitythresholdtemp)
s='Go'
f.write(struct.pack('I', len(s)) + s.encode('ascii')) # Write str length and str
f.seek(0)
print ('Sending to C#:', s)
n = struct.unpack('I', f.read(4))[0] # Read str length
facetolerancetemp = f.read(n).decode('ascii') # Read str
f.seek(0)
if (facetolerancetemp!=" "):
try:
face_tolerance = float(facetolerancetemp)
except ValueError:
pass
print ('Accept from C#', facetolerancetemp)
cams = [WebcamVideoStream(src=cam).start() for cam in camera]
s='Go'
f.write(struct.pack('I', len(s)) + s.encode('ascii')) # Write str length and str
f.seek(0)
print ('Sending to C#:', s)
elif(d == 1):
s='Wait'
f.write(struct.pack('I', len(s)) + s.encode('ascii')) # Write str length and str
f.seek(0)
print ('Sending to C#:', s)
elif(d == 0):
imgs = []
for i, cam in enumerate(cams):
# Grab the frames AND do the heavy preprocessing for each camera
# ret_val, img = cam.read()
# For better synchronization on multi-cam setup:
# Grab the frames first without doing the heavy stuffs (decode, demosaic, etc)
# ret_val = cam.grab()
# The FIFO nature of the buffer means we can't get the latest frame
# Thus skip the earlier frames. Delay stats: 7s 8fps +artifact >>> 2s 3fps
# for i in range(5):
# ret_val = cam.grab()
# Multi-threading using WebcamVideoStream
img = cam.read()
imgs.append(img)
# for i, cam in enumerate(cams):
# # Decode the captured frames
# ret_val, img = cam.retrieve()
# imgs.append(img)
# Skip frame if there's nothing
if(imgs is [None]):
continue
image = mainhuman_activity.preprocess(imgs, rotate)
print("\n######################## Openpose")
start_act, human_keypoints, humans = opose.runopenpose(image)
# print(humans, human_keypoints)
print("\n######################## Darknet")
dobj = dark.performDetect(image)
print(dobj)
print("\n######################## Facerec")
face_locs, face_names = facer.runinference(image, tolerance=face_tolerance, prescale=0.01, upsample=1)
print(face_locs, face_names)
print("\n######################## LSTM")
print("Frame: %d/%d" % (opose.videostep, n_steps))
if start_act == True:
act_labs = []
act_confs = []
for key, human_keypoint in human_keypoints.items():
print(key, human_keypoint)
if(len(human_keypoint)==n_steps):
act.runinference(human_keypoint)
act_labs.append(act.action)
act_confs.append(act.conf)
print("\n######################## Display")
# opose.display_all(image, humans, act.action, act.conf, dobj, face_locs, face_names)
opose.display_all(image, humans, act_labs, act_confs, dobj, face_locs, face_names, mode)
s='Image'
f.write(struct.pack('I', len(s)) + s.encode('ascii')) # Write str length and str
f.seek(0)
print ('Sending to C#:', s)
if cv2.waitKey(1) == 27:
break
except FileNotFoundError :
raise
cv2.destroyAllWindows()
# print("FPS: ", opose.hisfps)
fh = open("fps.txt", "w")
for fps in opose.hisfps:
fh.write("%.3f \n" % fps)
fh.close()
class openpose_human:
# def __init__(self, camera=0,resize='0x0',resize_out_ratio=4.0,model='mobilenet_thin',show_process=False):
def __init__(self, image, resize='0x0',model='mobilenet_thin'):
self.logger = logging.getLogger('TfPoseEstimator-WebCam')
self.logger.setLevel(logging.DEBUG)
self.ch = logging.StreamHandler()
self.ch.setLevel(logging.DEBUG)
self.formatter = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s')
self.ch.setFormatter(self.formatter)
self.logger.addHandler(self.ch)
self.logger.debug('initialization %s : %s' % (model, get_graph_path(model)))
self.w, self.h = model_wh(resize)
if self.w > 0 and self.h > 0:
self.e = TfPoseEstimator(get_graph_path(model), target_size=(self.w, self.h))
else:
self.e = TfPoseEstimator(get_graph_path(model), target_size=(432, 368))
self.logger.debug('cam read+')
# cam = cv2.VideoCapture(camera)
# ret_val, image = cam.read()
self.image_h, self.image_w = image.shape[:2]
# logger.info('cam image=%dx%d' % (image.shape[1], image.shape[0]))
self.fps_time = 0
self.videostep = 0
self.human_keypoint = {0: [np.array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])]}
self.hisfps = [] # Historical FPS data
def runopenpose(self, image, resize_out_ratio=4.0):
# ret_val, image = cam.read()
self.logger.debug('image process+')
humans = self.e.inference(image, resize_to_default=(self.w > 0 and self.h > 0), upsample_size=resize_out_ratio)
skeletoncount = 0
skels = np.array([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]])
for human in humans:
if skeletoncount == 0: # Initialize
skels = np.array([openpose_human.write_coco_json(human, self.image_w,self.image_h)])
else: # Append the rest
skels = np.vstack([skels, np.array(openpose_human.write_coco_json(human, self.image_w,self.image_h))])
skeletoncount = skeletoncount + 1
# if skeletoncount == 1: # Just assume it's the same prson if there's only one
# self.human_keypoint[0].append(skels)
if skeletoncount > 0:
self.human_keypoint = openpose_human.push(self.human_keypoint, skels)
self.videostep += 1
if (self.videostep == n_steps):
start_act = True
human_keypointer = self.human_keypoint
self.videostep = 0
else:
start_act = False
human_keypointer = {}
tf.reset_default_graph() # Reset the graph
# self.logger.debug('finished+')
return(start_act, human_keypointer, humans)
# def runopenpose(self, image, resize_out_ratio=4.0):
# # ret_val, image = cam.read()
# self.logger.debug('image process+')
# humans = self.e.inference(image, resize_to_default=(self.w > 0 and self.h > 0), upsample_size=resize_out_ratio)
# skeletoncount = 0
# skels = np.array([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]])
# for human in humans:
# if skeletoncount == 0:
# skels = np.array([openpose_human.write_coco_json(human,self.image_w,self.image_h)])
# else:
# skels = np.vstack([skels, np.array(openpose_human.write_coco_json(human,self.image_w,self.image_h))])
# skeletoncount = skeletoncount + 1
# if skeletoncount > 0:
# self.human_keypoint = openpose_human.push(self.human_keypoint,skels)
# # if humans:
# # self.human_keypoint.append(openpose_human.write_coco_json(humans[0],self.image_w,self.image_h))
# # else:
# # self.human_keypoint.append([0 for x in range(0,36)])
# self.videostep += 1
# if (self.videostep == n_steps):
# start_act = True
# human_keypointer = self.human_keypoint
# self.videostep = 0
# else:
# start_act = False
# human_keypointer = {}
# tf.reset_default_graph() # Reset the graph
# # self.logger.debug('finished+')
# return(start_act, human_keypointer, humans)
def display_all(self, image, humans, act_labs, act_confs, detections, face_locs, face_names, mode):
# try:
# from skimage import io, draw
# import numpy as np
# print("*** "+str(len(detections))+" Results, color coded by confidence ***")
if(mode):
vt = 10
# Openpose & LSTM display
self.logger.debug('postprocess+')
image = TfPoseEstimator.draw_humans(image, humans, imgcopy=False)
self.logger.debug('show+')
fps = 1.0 / (time.time() - self.fps_time)
self.hisfps.append(fps)
cv2.rectangle(image, (10, vt), (self.image_w-10,vt+10), (0, 128, 0), cv2.FILLED)
cv2.rectangle(image, (10, vt), (10+round((self.image_w-10)*self.videostep/n_steps),vt+10), (0, 255, 0), cv2.FILLED)
vt += 30
cv2.putText(image,
"FPS: %f" % fps,
(10, vt), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
(0, 255, 0), 2)
vt += 20
for (act_lab, act_conf) in zip(act_labs, act_confs):
cv2.putText(image,
"PRED: %s %.2f" % (act_lab, act_conf),
(10, vt), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
(0, 255, 0), 2)
vt += 20
# Darknet display
for detection in detections:
print(detection)
label = detection[0]
dconf = detection[1]
bounds = detection[2]
image, color = openpose_human.draw_box(image, 1, bounds, label, dconf)
# Facerec display
for (top, right, bottom, left), face in zip(face_locs, face_names):
print(face)
label = face
bounds = [4*left, 4*top, 4*(right-left), 4*(bottom-top)]
image, color = openpose_human.draw_box(image, 0, bounds, label, loc=1)
cv2.imwrite('./IPC CS/bin/Release/display_sharp.jpg', image)
self.fps_time = time.time()
self.logger.debug('finished+')
else:
cv2.imwrite('./IPC CS/bin/Release/display_sharp.jpg', image)
def draw_box(image, coord_type, bounds, text='', conf=1, loc=0):
# Based on the input detection coordinate
if coord_type == 0:
# Input (x, y) describes the top-left corner of detection
x = int(bounds[0])
y = int(bounds[1])
else: # Input (x, y) describes the center of detection
# Move it to the top-left corner
x = int(bounds[0] - bounds[2]/2)
y = int(bounds[1] - bounds[3]/2)
w = int(bounds[2])
h = int(bounds[3])
color = (int(255 * (1 - (conf ** 2))), int(255 * (conf ** 2)), 0)
# cv2.rectangle(img, pt1, pt2, color[, thickness[, lineType[, shift]]])
cv2.rectangle(image, (x, y), (x+w, y+h), color, 3)
# Object text
if loc == 0:
cv2.putText(image, "%s %.2f" % (text, conf), (x, y-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
elif loc == 1:
cv2.putText(image, "%s %.2f" % (text, conf), (x, y+h+15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
return image, color
def write_coco_json(human, image_w, image_h):
keypoints = []
coco_ids = coco_ids = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
for coco_id in coco_ids:
if coco_id not in human.body_parts.keys():
keypoints.extend([0, 0])
continue
body_part = human.body_parts[coco_id]
keypoints.extend([round(body_part.x * image_w, 3), round(body_part.y * image_h, 3)])
return keypoints
def push(traces, new_skels, THRESHOLD = 100, TRACE_SIZE = n_steps):
print("##### Multi-human")
"""Add the keypoints from a new frame into the buffer."""
# dists, neighbors = openpose_human.nearest_neighbors(traces, new_skels)
dists, neighbors = openpose_human.point(traces, new_skels)
keygen = []
# New skeletons which aren't close to a previously observed skeleton:
unslotted = []
# Previously observed skeletons which aren't close to a new one:
for each in traces.keys():
keygen.append(each)
unseen = set(keygen)
for skel, dist, neighbor in zip(new_skels, dists, neighbors):
print(dist, neighbor)
if dist <= THRESHOLD:
if neighbor in traces:
traces[neighbor].append(skel)
else:
traces[neighbor] = []
traces[neighbor].append(skel)
if len(traces[neighbor]) > TRACE_SIZE:
traces[neighbor].pop(0)
unseen.discard(neighbor)
else:
unslotted.append(skel)
for i in unseen:
del traces[i]
# Indices we didn't match, and the rest of the numbers are fair game
availible_slots = chain(sorted(unseen), count(len(traces)))
for slot, skel in zip(availible_slots, unslotted):
if slot in traces:
traces[slot].append(skel)
else:
traces[slot] = []
traces[slot].append(skel)
return traces
def point(traces, skels, TRACE_IDX = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35]):
if not traces: # First pass
return np.zeros(len(skels)), np.arange(len(skels))
prev = np.array([ # Pull the most recent location of each skeleton, [-1] means get 1 data from behind
coords[-1][TRACE_IDX] for _, coords in sorted(traces.items())])
curr = skels[:, TRACE_IDX]
# Determine representative point, may use various method such as median, average, etc
prev_point = openpose_human.average(prev)
curr_point = openpose_human.average(curr)
# N is typically small (< 40) so brute force is fast
nn_model = NearestNeighbors(n_neighbors=1, algorithm='brute')
nn_model.fit(prev_point)
dist, nn = nn_model.kneighbors(curr_point, return_distance=True)
return dist.flatten(), nn.flatten()
def average(skels):
avg_skels = np.empty((0, 2))
for skel in skels:
x = sum(skel[[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34]]) / 18
y = sum(skel[[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35]]) / 18
avg_skels = np.vstack((avg_skels, np.array([x, y])))
return avg_skels
def nearest_neighbors(traces, skels, TRACE_IDX = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35]):
if not traces: # First pass
return np.zeros(len(skels)), np.arange(len(skels))
prev = np.array([ # Pull the most recent location of each skeleton
coords[-1][TRACE_IDX] for _, coords in sorted(traces.items())])
curr = skels[:, TRACE_IDX]
# N is typically small (< 40) so brute force is fast
nn_model = NearestNeighbors(n_neighbors=1, algorithm='brute')
nn_model.fit(prev)
dist, nn = nn_model.kneighbors(curr, return_distance=True)
return dist.flatten(), nn.flatten()
class activity_human:
action = "null"
conf = 0
# LABELS = [
# "JUMPING",
# "JUMPING_JACKS",
# # "BOXING",
# "WAVING_2HANDS",
# "WAVING_1HAND",
# "CLAPPING_HANDS"
# ]
def __init__(self):
self.LABELS = LABELS
# Useful Constants
# Output classes to learn how to classify
# DATASET_PATH = "data/HAR_pose_activities/database/"
# X_train_path = DATASET_PATH + "X_train.txt"
# X_test_path = DATASET_PATH + "X_test.txt"
# X_test_path = "utilities/something/something.txt"
# y_train_path = DATASET_PATH + "Y_train.txt"
# y_test_path = DATASET_PATH + "Y_test.txt"
# n_steps = 32 # 32 timesteps per series
# n_steps = 1 # 32 timesteps per series
# X_train = load_X(X_train_path)
# X_test = activity_human.load_X(X_test_path)
# X_test = activity_human.load_XLive(human_keypoint)
#print X_test
# y_train = load_y(y_train_path)
# y_test = activity_human.load_y(y_test_path)
# proof that it actually works for the skeptical: replace labelled classes with random classes to train on
#for i in range(len(y_train)):
# y_train[i] = randint(0, 5)
# Input Data
# n_input = len(X_train[0][0]) # num input parameters per timestep
# training_data_count = len(X_train) # 4519 training series (with 50% overlap between each serie)
# test_data_count = len(X_test) # 1197 test series
self.n_input = 36
self.n_hidden = 34 # Hidden layer num of features
# n_classes = 6
n_classes = len(self.LABELS)
# n_steps = 32
#updated for learning-rate decay
# calculated as: decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
decaying_learning_rate = True
learning_rate = 0.0025 #used if decaying_learning_rate set to False
init_learning_rate = 0.005
decay_rate = 0.96 #the base of the exponential in the decay
decay_steps = 100000 #used in decay every 60000 steps with a base of 0.96
global_step = tf.Variable(0, trainable=False)
lambda_loss_amount = 0.0015
# training_iters = training_data_count *300 # Loop 300 times on the dataset, ie 300 epochs
# training_iters = training_data_count *60
# training_iters = training_data_count *120
# training_iters = training_data_count *1
batch_size = 512
display_iter = batch_size*8 # To show test set accuracy during training
#### Build the network
# Graph input/output
self.x = tf.placeholder(tf.float32, [None, n_steps, self.n_input])
self.y = tf.placeholder(tf.float32, [None, n_classes])
# Graph weights
weights = {
'hidden': tf.Variable(tf.random_normal([self.n_input, self.n_hidden])), # Hidden layer weights
'out': tf.Variable(tf.random_normal([self.n_hidden, n_classes], mean=1.0))
}
biases = {
'hidden': tf.Variable(tf.random_normal([self.n_hidden])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
self.pred = activity_human.LSTM_RNN(self, self.x, weights, biases)
# Loss, optimizer and evaluation
l2 = lambda_loss_amount * sum(
tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables()
) # L2 loss prevents this overkill neural network to overfit the data
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.y, logits=self.pred)) + l2 # Softmax loss
if decaying_learning_rate:
learning_rate = tf.train.exponential_decay(init_learning_rate, global_step*batch_size, decay_steps, decay_rate, staircase=True)
#decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) #exponentially decayed learning rate
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost,global_step=global_step) # Adam Optimizer
# correct_pred = tf.equal(tf.argmax(self.pred,1), tf.argmax(y,1))
# accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# if decaying_learning_rate:
# learning_rate = tf.train.exponential_decay(init_learning_rate, global_step*batch_size, decay_steps, decay_rate, staircase=True)
test_losses = []
test_accuracies = []
train_losses = []
train_accuracies = []
self.sess = tf.InteractiveSession(config=tf.ConfigProto(log_device_placement=True))
# self.sess = tf.self.session(config=tf.ConfigProto(log_device_placement=True))
init = tf.global_variables_initializer()
self.sess.run(init)
# training_iters = training_data_count *30
#create saver before training
saver = tf.train.Saver(var_list={'wh':weights['hidden'], 'wo':weights['out'], 'bh':biases['hidden'], 'bo':biases['out']})
load = True
train = False
update = False
#check if you want to retrain or import a saved model
print("aaa")
if load:
saver.restore(self.sess, DATASET_PATH + "model.ckpt")
print("Model restored.")
print("bbb")
correct_pred = tf.equal(tf.argmax(self.pred,1), tf.argmax(self.y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Load the networks inputs
def runinference(self, human_keypoint):
time_start = time.time()
##### Inferencing
# X_infer_path = "utilities/something/something.txt"
# X_infer_path = DATASET_PATH + "X_test.txt"
# X_val = load_X(X_infer_path)
X_test = activity_human.load_XLive(human_keypoint)
self.preds = self.sess.run(
[self.pred],
feed_dict={
self.x: X_test
}
)
id, self.conf = max(enumerate(self.preds[0][0]), key=operator.itemgetter(1))
self.action = self.LABELS[id]
print(self.preds, self.action)
time_stop = time.time()
print("TOTAL TIME: {}".format(time_stop - time_start))
def load_X(X_path):
file = open(X_path, 'r')
X_ = np.array(
[elem for elem in [
row.split(',') for row in file
]],
dtype=np.float32
)
file.close()
blocks = int(len(X_) / n_steps)
X_ = np.array(np.split(X_,blocks))
return X_
# Load the networks outputs
def load_XLive(keypoints):
# print(keypoints)
print(len(keypoints), ":", [len(row) for row in keypoints])
X_ = np.array(keypoints,dtype=np.float32)
blocks = int(len(X_) / n_steps)
X_ = np.array(np.split(X_,blocks))
return X_
def load_y(y_path):
file = open(y_path, 'r')
y_ = np.array(
[elem for elem in [
row.replace(' ', ' ').strip().split(' ') for row in file
]],
dtype=np.int32
)
file.close()
# for 0-based indexing
return y_ - 1
def LSTM_RNN(self, _X, _weights, _biases):
# model architecture based on "guillaume-chevalier" and "aymericdamien" under the MIT license.
_X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size
_X = tf.reshape(_X, [-1, self.n_input])
# Rectifies Linear Unit activation function used
_X = tf.nn.relu(tf.matmul(_X, _weights['hidden']) + _biases['hidden'])
# Split data because rnn cell needs a list of inputs for the RNN inner loop
_X = tf.split(_X, n_steps, 0)
# Define two stacked LSTM cells (two recurrent layers deep) with tensorflow
lstm_cell_1 = tf.contrib.rnn.BasicLSTMCell(self.n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_cell_2 = tf.contrib.rnn.BasicLSTMCell(self.n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_cells = tf.contrib.rnn.MultiRNNCell([lstm_cell_1, lstm_cell_2], state_is_tuple=True)
outputs, states = tf.contrib.rnn.static_rnn(lstm_cells, _X, dtype=tf.float32)
# A single output is produced, in style of "many to one" classifier, refer to http://karpathy.github.io/2015/05/21/rnn-effectiveness/ for details
lstm_last_output = outputs[-1]
# Linear activation
return tf.matmul(lstm_last_output, _weights['out']) + _biases['out']
def extract_batch_size(_train, _labels, _unsampled, batch_size):
# Fetch a "batch_size" amount of data and labels from "(X|y)_train" data.
# Elements of each batch are chosen randomly, without replacement, from X_train with corresponding label from Y_train
# unsampled_indices keeps track of sampled data ensuring non-replacement. Resets when remaining datapoints < batch_size
shape = list(_train.shape)
shape[0] = batch_size
batch_s = np.empty(shape)
batch_labels = np.empty((batch_size,1))
for i in range(batch_size):
# Loop index
# index = random sample from _unsampled (indices)
index = random.choice(_unsampled)
batch_s[i] = _train[index]
batch_labels[i] = _labels[index]
_unsampled = list(_unsampled)
_unsampled.remove(index)
return batch_s, batch_labels, _unsampled
def one_hot(y_):
# One hot encoding of the network outputs
# e.g.: [[5], [0], [3]] --> [[0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]]
y_ = y_.reshape(len(y_))
n_values = int(np.max(y_)) + 1
return np.eye(n_values)[np.array(y_, dtype=np.int32)] # Returns FLOATS
if __name__ == '__main__':
mainhuman_activity()