forked from Cartucho/mAP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
557 lines (517 loc) · 19.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import glob
import json
import os
import shutil
import operator
import sys
import argparse
MINOVERLAP = 0.5 # default value (defined in the PASCAL VOC2012 challenge)
parser = argparse.ArgumentParser()
parser.add_argument('-na', '--no-animation', help="no animation is shown.", action="store_true")
parser.add_argument('-np', '--no-plot', help="no plot is shown.", action="store_true")
parser.add_argument('-q', '--quiet', help="minimalistic console output.", action="store_true")
# argparse receiving list of classes to be ignored
parser.add_argument('-i', '--ignore', nargs='+', type=str, help="ignore a list of classes.")
# argparse receiving list of classes with specific IoU
parser.add_argument('--set-class-iou', nargs='+', type=str, help="set IoU for a specific class.")
args = parser.parse_args()
# if there are no classes to ignore then replace None by empty list
if args.ignore is None:
args.ignore = []
specific_iou_flagged = False
if args.set_class_iou is not None:
specific_iou_flagged = True
# if there are no images then no animation can be shown
img_path = 'images'
if os.path.exists(img_path):
for dirpath, dirnames, files in os.walk(img_path):
if not files:
# no image files found
args.no_animation = True
else:
args.no_animation = True
# try to import OpenCV if the user didn't choose the option --no-animation
show_animation = False
if not args.no_animation:
try:
import cv2
show_animation = True
except ImportError:
args.no_animation = True
# try to import Matplotlib if the user didn't choose the option --no-plot
draw_plot = False
if not args.no_plot:
try:
import matplotlib.pyplot as plt
draw_plot = True
except ImportError:
args.no_plot = True
"""
throw error and exit
"""
def error(msg):
print(msg)
sys.exit(0)
"""
check if the number is a float between 0.0 and 1.0
"""
def is_float_between_0_and_1(value):
try:
val = float(value)
if val > 0.0 and val < 1.0:
return True
else:
return False
except ValueError:
return False
"""
Calculate the AP given the recall and precision array
1st) We compute a version of the measured precision/recall curve with
precision monotonically decreasing
2nd) We compute the AP as the area under this curve by numerical integration.
"""
def voc_ap(rec, prec):
"""
--- Official matlab code VOC2012---
mrec=[0 ; rec ; 1];
mpre=[0 ; prec ; 0];
for i=numel(mpre)-1:-1:1
mpre(i)=max(mpre(i),mpre(i+1));
end
i=find(mrec(2:end)~=mrec(1:end-1))+1;
ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
"""
rec.insert(0, 0.0) # insert 0.0 at begining of list
rec.append(1.0) # insert 1.0 at end of list
mrec = rec[:]
prec.insert(0, 0.0) # insert 0.0 at begining of list
prec.append(0.0) # insert 1.0 at end of list
mpre = prec[:]
# matlab indexes start in 1 but python in 0, so I have to do:
# range(start=(len(mpre) - 2), end=0, step=-1)
# also the python function range excludes the end, resulting in:
# range(start=(len(mpre) - 2), end=-1, step=-1)
for i in range(len(mpre)-2, -1, -1):
mpre[i] = max(mpre[i], mpre[i+1])
# matlab: i=find(mrec(2:end)~=mrec(1:end-1))+1;
ind = []
for ind_1 in range(1, len(mrec)):
if mrec[ind_1] != mrec[ind_1-1]:
ind.append(ind_1) # if it was matlab would be ind_1 + 1
# matlab: ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
ap = 0.0
for i in ind:
ap += ((mrec[i]-mrec[i-1])*mpre[i])
return ap, mrec, mpre
"""
Convert the lines of a file to a list
"""
def file_lines_to_list(path):
# open txt file lines to a list
with open(path) as f:
content = f.readlines()
# remove whitespace characters like `\n` at the end of each line
content = [x.strip() for x in content]
return content
"""
Draws text in image
"""
def draw_text_in_image(img, text, pos, color, line_width):
font = cv2.FONT_HERSHEY_PLAIN
fontScale = 1
lineType = 1
bottomLeftCornerOfText = pos
cv2.putText(img, text,
bottomLeftCornerOfText,
font,
fontScale,
color,
lineType)
text_width, _ = cv2.getTextSize(text, font, fontScale, lineType)[0]
return img, (line_width + text_width)
"""
Draw plot using Matplotlib
"""
def draw_plot_func(dictionary, n_classes, window_title, plot_title, y_label, output_path, to_show):
# sort the dictionary by decreasing value (reverse=True), into a list of tuples
sorted_dic_by_value = sorted(dictionary.items(), key=operator.itemgetter(1), reverse=True)
# unpacking the list of tuples into two lists
sorted_keys, sorted_values = zip(*sorted_dic_by_value)
plt.bar(range(n_classes), sorted_values, align='center')
plt.xticks(range(n_classes), sorted_keys, rotation='vertical')
# set window title
fig = plt.gcf() # gcf - get current figure
fig.canvas.set_window_title(window_title)
# set plot title
plt.title(plot_title)
# set axis titles
# plt.xlabel('classes')
plt.ylabel(y_label)
# adjust size of window
fig.tight_layout()
if to_show:
plt.show()
# save the plot
fig.savefig(output_path)
# clear the plot
plt.clf()
"""
Create a "tmp_files/" and "results/" directory
"""
tmp_files_path = "tmp_files"
if not os.path.exists(tmp_files_path): # if it doesn't exist already
os.makedirs(tmp_files_path)
results_files_path = "results"
if os.path.exists(results_files_path): # if it exist already
# reset the results directory
shutil.rmtree(results_files_path)
os.makedirs(results_files_path)
if draw_plot:
os.makedirs(results_files_path + "/classes")
if show_animation:
os.makedirs(results_files_path + "/images")
"""
Ground-Truth
Load each of the ground-truth files into a temporary ".json" file.
Create a list of all the class names present in the ground-truth (unique_classes).
"""
# get a list with the ground-truth files
ground_truth_files_list = glob.glob('ground-truth/*.txt')
ground_truth_files_list.sort()
gt_counter_per_class = {}
unique_classes = set([])
# dictionary with counter per class
for txt_file in ground_truth_files_list:
#print(txt_file)
file_id = txt_file.split(".txt",1)[0]
file_id = os.path.basename(os.path.normpath(file_id))
# check if there is a correspondent predicted objects file
if not os.path.exists('predicted/' + file_id + ".txt"):
error("Error. File not found: predicted/" + file_id + ".txt")
lines_list = file_lines_to_list(txt_file)
# create ground-truth dictionary
bounding_boxes = []
for line in lines_list:
class_name, left, top, right, bottom = line.split()
# check if class is in the ignore list, if yes skip
if class_name in args.ignore:
continue
bbox = left + " " + top + " " + right + " " +bottom
bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False})
# count that object
if class_name in gt_counter_per_class:
gt_counter_per_class[class_name] += 1
else:
# if class didn't exist yet
gt_counter_per_class[class_name] = 1
unique_classes.add(class_name)
# dump bounding_boxes into a ".json" file
with open(tmp_files_path + "/" + file_id + "_ground_truth.json", 'w') as outfile:
json.dump(bounding_boxes, outfile)
# let's sort the classes alphabetically
unique_classes = sorted(unique_classes)
n_classes = len(unique_classes)
#print(unique_classes)
#print(gt_counter_per_class)
"""
Check format of the flag --set-class-iou (if used)
e.g. check if class exists
"""
if specific_iou_flagged:
n_args = len(args.set_class_iou)
error_msg = \
'\n --set-class-iou [class_1] [IoU_1] [class_2] [IoU_2] [...]'
if n_args % 2 != 0:
error('Error, missing arguments. Flag usage:' + error_msg)
# [class_1] [IoU_1] [class_2] [IoU_2]
# specific_iou_classes = ['class_1', 'class_2']
specific_iou_classes = args.set_class_iou[::2] # even
# iou_list = ['IoU_1', 'IoU_2']
iou_list = args.set_class_iou[1::2] # odd
if len(specific_iou_classes) != len(iou_list):
error('Error, missing arguments. Flag usage:' + error_msg)
for tmp_class in specific_iou_classes:
if tmp_class not in unique_classes:
error('Error, unknown class \"' + tmp_class + '\". Flag usage:' + error_msg)
for num in iou_list:
if not is_float_between_0_and_1(num):
error('Error, IoU must be between 0.0 and 1.0. Flag usage:' + error_msg)
"""
Plot the total number of occurences of each class in the ground-truth
"""
if draw_plot:
window_title = "Ground-Truth Info"
plot_title = "Total of ground-truth files = " + str(len(ground_truth_files_list))
y_label = "Number of objects per class"
output_path = results_files_path + "/Ground-Truth Info.jpg"
to_show = False
draw_plot_func(gt_counter_per_class, n_classes, window_title, plot_title, y_label, output_path, to_show)
"""
Write number of ground-truth objects per class to results.txt
"""
with open(results_files_path + "/results.txt", 'w') as results_file:
results_file.write("# Number of ground-truth objects per class\n")
for class_name in sorted(gt_counter_per_class):
results_file.write(class_name + ": " + str(gt_counter_per_class[class_name]) + "\n")
"""
Predicted
Load each of the predicted files into a temporary ".json" file.
"""
# get a list with the predicted files
predicted_files_list = glob.glob('predicted/*.txt')
predicted_files_list.sort()
pred_counter_per_class = {}
for class_name in unique_classes:
bounding_boxes = []
pred_counter_per_class[class_name] = 0
for txt_file in predicted_files_list:
#print txt_file
lines = file_lines_to_list(txt_file)
for line in lines:
line_class_name, confidence, left, top, right, bottom = line.split()
if line_class_name == class_name:
#print("match")
file_id = txt_file.split(".txt",1)[0]
file_id = os.path.basename(os.path.normpath(file_id))
bbox = left + " " + top + " " + right + " " +bottom
bounding_boxes.append({"confidence":confidence, "file_id":file_id, "bbox":bbox})
#print(bounding_boxes)
# count that object
if class_name in pred_counter_per_class:
pred_counter_per_class[class_name] += 1
else:
# if class didn't exist yet
pred_counter_per_class[class_name] = 1
# sort predictions by decreasing confidence
bounding_boxes.sort(key=lambda x:x['confidence'], reverse=True)
with open(tmp_files_path + "/" + class_name + "_predictions.json", 'w') as outfile:
json.dump(bounding_boxes, outfile)
"""
Plot the total number of occurences of each class in the "predicted" folder
"""
if draw_plot:
window_title = "Predicted Objects Info"
plot_title = "Total of Predicted Objects files = " + str(len(predicted_files_list))
y_label = "Number of objects per class"
output_path = results_files_path + "/Predicted Objects Info.jpg"
to_show = False
draw_plot_func(pred_counter_per_class, n_classes, window_title, plot_title, y_label, output_path, to_show)
"""
Write number of predicted objects per class to results.txt
"""
with open(results_files_path + "/results.txt", 'a') as results_file:
results_file.write("\n# Number of predicted objects per class\n")
for class_name in sorted(pred_counter_per_class):
results_file.write(class_name + ": " + str(pred_counter_per_class[class_name]) + "\n")
"""
Calculate the AP for each class
"""
sum_AP = 0.0
ap_dictionary = {}
# open file to store the results
with open(results_files_path + "/results.txt", 'a') as results_file:
results_file.write("\n# AP and precision/recall per class\n")
for class_index, class_name in enumerate(unique_classes):
"""
Load predictions of that class
"""
predictions_file = tmp_files_path + "/" + class_name + "_predictions.json"
predictions_data = json.load(open(predictions_file))
"""
Assign predictions to ground truth objects
"""
nd = len(predictions_data)
tp = [0] * nd # creates an array of zeros of size nd
fp = [0] * nd
for idx, prediction in enumerate(predictions_data):
file_id = prediction["file_id"]
if show_animation:
# find ground truth image
ground_truth_img = glob.glob1(img_path, file_id + ".*")
#tifCounter = len(glob.glob1(myPath,"*.tif"))
if len(ground_truth_img) == 0:
error("Error. Image not found with id: " + file_id)
elif len(ground_truth_img) > 1:
error("Error. Multiple image with id: " + file_id)
else: # found image
#print(img_path + "/" + ground_truth_img[0])
# Load image
img = cv2.imread(img_path + "/" + ground_truth_img[0])
# Add bottom border to image
bottom_border = 60
BLACK = [0, 0, 0]
img = cv2.copyMakeBorder(img, 0, bottom_border, 0, 0, cv2.BORDER_CONSTANT, value=BLACK)
# assign prediction to ground truth object if any
# open ground-truth with that file_id
gt_file = tmp_files_path + "/" + file_id + "_ground_truth.json"
ground_truth_data = json.load(open(gt_file))
ovmax = -1
gt_match = -1
# load prediction bounding-box
bb = [ float(x) for x in prediction["bbox"].split() ]
for obj in ground_truth_data:
# look for a class_name match
if obj["class_name"] == class_name:
bbgt = [ float(x) for x in obj["bbox"].split() ]
bi = [max(bb[0],bbgt[0]), max(bb[1],bbgt[1]), min(bb[2],bbgt[2]), min(bb[3],bbgt[3])]
iw = bi[2] - bi[0] + 1
ih = bi[3] - bi[1] + 1
if iw > 0 and ih > 0:
# compute overlap (IoU) = area of intersection / area of union
ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + (bbgt[2] - bbgt[0]
+ 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih
ov = iw * ih / ua
if ov > ovmax:
ovmax = ov
gt_match = obj
# assign prediction as true positive or false positive
if show_animation:
status = "NO MATCH FOUND!" # status is only used in the animation
# set minimum overlap
min_overlap = MINOVERLAP
if specific_iou_flagged:
if class_name in specific_iou_classes:
index = specific_iou_classes.index(class_name)
min_overlap = float(iou_list[index])
if ovmax >= min_overlap:
if not bool(gt_match["used"]):
# true positive
tp[idx] = 1
gt_match["used"] = True
# update the ".json" file
with open(gt_file, 'w') as f:
f.write(json.dumps(ground_truth_data))
if show_animation:
status = "MATCH!"
else:
# false positive (multiple detection)
fp[idx] = 1
if show_animation:
status = "REPEATED MATCH!"
else:
# false positive
fp[idx] = 1
if ovmax > 0:
status = "INSUFFICIENT OVERLAP"
"""
Draw image to show animation
"""
if show_animation:
height, widht = img.shape[:2]
# colors (OpenCV works with BGR)
white = (255,255,255)
light_blue = (255,200,100)
green = (0,255,0)
light_red = (30,30,255)
# 1st line
margin = 10
v_pos = int(height - margin - (bottom_border / 2))
text = "Image: " + ground_truth_img[0] + " "
img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0)
text = "Class [" + str(class_index) + "/" + str(n_classes) + "]: " + class_name + " "
img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), light_blue, line_width)
if ovmax != -1:
color = light_red
if status == "INSUFFICIENT OVERLAP":
text = "IoU: {0:.2f}% ".format(ovmax*100) + "< {0:.2f}% ".format(min_overlap*100)
else:
text = "IoU: {0:.2f}% ".format(ovmax*100) + ">= {0:.2f}% ".format(min_overlap*100)
color = green
img, _ = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width)
# 2nd line
v_pos += int(bottom_border / 2)
text = "Prediction confidence: {0:.2f}% ".format(float(prediction["confidence"])*100)
img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0)
color = light_red
if status == "MATCH!":
color = green
text = "Result: " + status + " "
img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width)
if ovmax > 0: # if there is intersections between the bounding-boxes
bbgt = [ float(x) for x in gt_match["bbox"].split() ]
cv2.rectangle(img,(int(bbgt[0]),int(bbgt[1])),(int(bbgt[2]),int(bbgt[3])),light_blue,2)
if status == "MATCH!":
cv2.rectangle(img,(int(bb[0]),int(bb[1])),(int(bb[2]),int(bb[3])),green,2)
else:
cv2.rectangle(img,(int(bb[0]),int(bb[1])),(int(bb[2]),int(bb[3])),light_red,2)
cv2.imshow("Animation", img)
cv2.waitKey(20) # show image for 20 ms
# save image to results
output_img_path = results_files_path + "/images/" + class_name + "_prediction" + str(idx) + ".jpg"
cv2.imwrite(output_img_path, img)
#print(tp)
# compute precision/recall
cumsum = 0
for idx, val in enumerate(fp):
fp[idx] += cumsum
cumsum += val
cumsum = 0
for idx, val in enumerate(tp):
tp[idx] += cumsum
cumsum += val
#print(tp)
rec = tp[:]
for idx, val in enumerate(tp):
rec[idx] = float(tp[idx]) / gt_counter_per_class[class_name]
#print(rec)
prec = tp[:]
for idx, val in enumerate(tp):
prec[idx] = float(tp[idx]) / (fp[idx] + tp[idx])
#print(prec)
ap, mrec, mprec = voc_ap(rec, prec)
sum_AP += ap
text = class_name + " AP = {0:.2f}%".format(ap*100)
"""
Write to results.txt
"""
rounded_prec = [ '%.2f' % elem for elem in prec ]
rounded_rec = [ '%.2f' % elem for elem in rec ]
results_file.write(text + "\n Precision: " + str(rounded_prec) + "\n Recall :" + str(rounded_rec) + "\n\n")
if not args.quiet:
print(text)
ap_dictionary[class_name] = ap
"""
Draw plot
"""
if draw_plot:
plt.plot(rec, prec, '-o')
plt.fill_between(mrec, 0, mprec, alpha=0.2, edgecolor='r')
# set window title
fig = plt.gcf() # gcf - get current figure
fig.canvas.set_window_title('AP ' + class_name)
# set plot title
plt.title('class: ' + text)
#plt.suptitle('This is a somewhat long figure title', fontsize=16)
# set axis titles
plt.xlabel('Recall')
plt.ylabel('Precision')
# optional - set axes
axes = plt.gca() # gca - get current axes
axes.set_xlim([0.0,1.0])
axes.set_ylim([0.0,1.05]) # .05 to give some extra space
# Alternative option -> wait for button to be pressed
#while not plt.waitforbuttonpress(): pass # wait for key display
# Alternative option -> normal display
#plt.show()
# save the plot
fig.savefig(results_files_path + "/classes/" + class_name + ".jpg")
plt.cla() # clear axes for next plot
if show_animation:
cv2.destroyAllWindows()
results_file.write("\n# mAP of all classes\n")
mAP = sum_AP / n_classes
text = "mAP = {0:.2f}%".format(mAP*100)
results_file.write(text + "\n")
print(text)
# remove the tmp_files directory
shutil.rmtree(tmp_files_path)
"""
Draw mAP plot (Show AP's of all classes in decreasing order)
"""
if draw_plot:
window_title = "mAP"
plot_title = "mAP = {0:.2f}%".format(mAP*100)
y_label = "Average Precision"
output_path = results_files_path + "/mAP.jpg"
to_show = True
draw_plot_func(ap_dictionary, n_classes, window_title, plot_title, y_label, output_path, to_show)