-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathpretrain_llama.py
148 lines (141 loc) · 6.14 KB
/
pretrain_llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
'''
Author: LiangSong(sl12160010@gmail.com)
Date: 2023-03-17 14:27:28
LastEditors: LiangSong(sl12160010@gmail.com)
LastEditTime: 2023-03-27 01:07:25
FilePath: /Open-Llama/pretrain_llama.py
Description:
pretrain GPT
Copyright (c) 2023 by LiangSong(sl12160010@gmail.com), All Rights Reserved.
'''
import os
import time
import wandb
import torch
import random
import sentencepiece as spm
from torchinfo import summary
from accelerate import Accelerator
from datasets import IterableDataset
from torch.utils.data import DataLoader
from deepspeed.ops.adam import FusedAdam
from transformers import LlamaForCausalLM, LlamaConfig, get_cosine_schedule_with_warmup
from dataset.validation import val_set
from dataset.tokenizer import Tokenizer
from dataset.data_iter import create_shard_kwargs, create_data_iter
from dataset.pretrain_dataset import preprocess_the_pile_gen, preprocess_wudao_gen, pretrain_collate_fn_gen
from configs.train_config import *
accelerator = Accelerator()
if accelerator.is_main_process:
wandb.init(
project='LLAMA Pretrain'
)
log_interval *= accelerator.gradient_accumulation_steps
eval_interval *= accelerator.gradient_accumulation_steps
save_interval *= accelerator.gradient_accumulation_steps
sp_model = spm.SentencePieceProcessor(model_file=tokenizer_model_path)
tokenizer = Tokenizer(sp_model)
paths = create_shard_kwargs(patterns)
random.shuffle(paths)
transform_dict = {
'wudao': preprocess_wudao_gen(tokenizer, max_length),
'pile': preprocess_the_pile_gen(tokenizer, max_length)
}
data_set = IterableDataset.from_generator(create_data_iter, gen_kwargs={
'paths': paths,
'transform_dict': transform_dict,
'process_index': accelerator.process_index,
'num_processes': accelerator.num_processes
})
train_loader = DataLoader(data_set, batch_size=train_batch_size, num_workers=1,
collate_fn=pretrain_collate_fn_gen(tokenizer, max_length), drop_last=True)
# smaller initializer_range make training more stable
# add stabel embedding to token embedding
raw_model = LlamaForCausalLM(LlamaConfig(vocab_size=tokenizer.vocab_size,
initializer_range=initializer_range,
pad_token_id=tokenizer.pad_id,
rms_norm_eps=1e-5,
hidden_dropout_prob=0.1,
attention_dropout_prob=0.1,
use_stable_embedding=True,
shared_input_output_embedding=True))
raw_model.eval()
with torch.no_grad():
summary(raw_model.cuda(), input_data=torch.ones(1, 64, dtype=torch.int64).cuda())
no_decay = ["bias", "LayerNorm.weight", "layernorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in raw_model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": weight_decay,
},
{
"params": [p for n, p in raw_model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optim = FusedAdam(optimizer_grouped_parameters, lr=lr, betas=(0.9, 0.95))
optim.zero_grad()
factor = accelerator.num_processes / accelerator.gradient_accumulation_steps
scheduler = get_cosine_schedule_with_warmup(optim, num_warmup_steps=num_warmup_steps * factor,
num_training_steps=num_training_steps * factor)
_, model, optim, scheduler = accelerator.prepare(
train_loader, raw_model, optim, scheduler
)
print('start training...')
train_loader_iter = iter(train_loader)
global_step = 0
start_time = time.time()
for data_step in range(num_training_steps):
model.train()
with accelerator.accumulate(model):
batch = next(train_loader_iter)
for k, v in batch.items():
batch[k] = v.to(accelerator.device)
labels = batch['input_ids'].clone()
labels[labels==tokenizer.pad_id] = -100
out = model(**batch, labels=labels)
total_loss = out.loss
losses = {
'total_loss': total_loss
}
accelerator.backward(total_loss)
optim.step()
scheduler.step()
optim.zero_grad()
if accelerator.sync_gradients:
global_step += 1
if data_step % log_interval == 0 and data_step > 0 and accelerator.is_main_process:
cost_time = time.time() - start_time
start_time = time.time()
tokens = train_batch_size * log_interval * max_length
wandb.log({'Training/Token per second per gpu': tokens/cost_time})
for k, v in losses.items():
wandb.log({'Losses/{}'.format(k): v})
current_lr = optim.param_groups[0]['lr']
wandb.log({'Training/LR': current_lr})
if optim.scaler is not None:
wandb.log({'Training/Loss Scale': optim.scaler.get_scale()})
wandb.log({'Training/Data Step': data_step})
wandb.log({'Training/Global Step': global_step})
accelerator.print('Global Step: {}, Data Step: {}, Loss: {}, Token per second per gpu: {}'.format(
global_step, data_step, losses['total_loss'], tokens/cost_time))
if data_step % eval_interval == 0 and accelerator.is_main_process:
text_table = wandb.Table(columns=['question', 'pred'])
model.eval()
with torch.no_grad():
for data in val_set:
raw_inputs = data
inputs_len = len(raw_inputs)
inputs = tokenizer(raw_inputs, return_tensors=True, add_special_tokens=False)
for k, v in inputs.items():
inputs[k] = v.to(accelerator.device)
pred = model.generate(**inputs, max_new_tokens=256, do_sample=True, repetition_penalty=2.0)
pred = tokenizer.decode(pred.cpu())[0]
pred = pred[inputs_len:]
text_table.add_data(raw_inputs, pred)
wandb.log({'Predictions on {}'.format(global_step) : text_table})
if data_step % save_interval == 0 and data_step > 0 and accelerator.is_main_process:
if not os.path.isdir(work_dir):
os.mkdir(work_dir)
torch.save(raw_model.state_dict(), '{}/{}.pt'.format(work_dir, global_step))
wandb.finish()