-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
29 lines (25 loc) · 1.25 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import torch
import torchvision
import torchvision.datasets as datasets
def get_celeba_loaders(root='~/.ml_data', batch_size=64):
"""Return a tuple containing the attribute names as a tuple,
and the train, test, and validation data loaders for the
CelebA dataset from torchvision.
"""
toTensor = torchvision.transforms.ToTensor()
train_dset = datasets.CelebA(
root, split='train', download=True, transform=toTensor)
test_dset = datasets.CelebA(
root, split='test', download=True, transform=toTensor)
val_dset = datasets.CelebA(
root, split='valid', download=True, transform=toTensor)
train_loader = torch.utils.data.DataLoader(train_dset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dset,
batch_size=batch_size,
shuffle=False)
val_loader = torch.utils.data.DataLoader(val_dset,
batch_size=batch_size,
shuffle=False)
return (tuple(train_dset.attr_names), train_loader, test_loader, val_loader)