-
Notifications
You must be signed in to change notification settings - Fork 6
/
visualizer.py
605 lines (488 loc) · 18.9 KB
/
visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
# python 3.7
"""Utility functions for visualizing results on html page."""
import base64
import os.path
import cv2
import numpy as np
__all__ = [
'get_grid_shape', 'get_blank_image', 'load_image', 'save_image',
'resize_image', 'add_text_to_image', 'fuse_images', 'HtmlPageVisualizer',
'VideoReader', 'VideoWriter', 'adjust_pixel_range'
]
def adjust_pixel_range(images, min_val=-1.0, max_val=1.0, channel_order='NCHW'):
"""Adjusts the pixel range of the input images.
This function assumes the input array (image batch) is with shape [batch_size,
channel, height, width] if `channel_order = NCHW`, or with shape [batch_size,
height, width] if `channel_order = NHWC`. The returned images are with shape
[batch_size, height, width, channel] and pixel range [0, 255].
NOTE: The channel order of output images will remain the same as the input.
Args:
images: Input images to adjust pixel range.
min_val: Min value of the input images. (default: -1.0)
max_val: Max value of the input images. (default: 1.0)
channel_order: Channel order of the input array. (default: NCHW)
Returns:
The postprocessed images with dtype `numpy.uint8` and range [0, 255].
Raises:
ValueError: If the input `images` are not with type `numpy.ndarray` or the
shape is invalid according to `channel_order`.
"""
if not isinstance(images, np.ndarray):
raise ValueError(f'Images should be with type `numpy.ndarray`!')
channel_order = channel_order.upper()
if channel_order not in ['NCHW', 'NHWC']:
raise ValueError(f'Invalid channel order `{channel_order}`!')
if images.ndim != 4:
raise ValueError(f'Input images are expected to be with shape `NCHW` or '
f'`NHWC`, but `{images.shape}` is received!')
if channel_order == 'NCHW' and images.shape[1] not in [1, 3]:
raise ValueError(f'Input images should have 1 or 3 channels under `NCHW` '
f'channel order!')
if channel_order == 'NHWC' and images.shape[3] not in [1, 3]:
raise ValueError(f'Input images should have 1 or 3 channels under `NHWC` '
f'channel order!')
images = images.astype(np.float32)
images = (images - min_val) * 255 / (max_val - min_val)
images = np.clip(images + 0.5, 0, 255).astype(np.uint8)
if channel_order == 'NCHW':
images = images.transpose(0, 2, 3, 1)
return images
def get_grid_shape(size, row=0, col=0, is_portrait=False):
"""Gets the shape of a grid based on the size.
This function makes greatest effort on making the output grid square if
neither `row` nor `col` is set. If `is_portrait` is set as `False`, the height
will always be equal to or smaller than the width. For example, if input
`size = 16`, output shape will be `(4, 4)`; if input `size = 15`, output shape
will be (3, 5). Otherwise, the height will always be equal to or larger than
the width.
Args:
size: Size (height * width) of the target grid.
is_portrait: Whether to return a portrait size of a landscape size.
(default: False)
Returns:
A two-element tuple, representing height and width respectively.
"""
assert isinstance(size, int)
assert isinstance(row, int)
assert isinstance(col, int)
if size == 0:
return (0, 0)
if row > 0 and col > 0 and row * col != size:
row = 0
col = 0
if row > 0 and size % row == 0:
return (row, size // row)
if col > 0 and size % col == 0:
return (size // col, col)
row = int(np.sqrt(size))
while row > 0:
if size % row == 0:
col = size // row
break
row = row - 1
return (col, row) if is_portrait else (row, col)
def get_blank_image(height, width, channels=3, is_black=True):
"""Gets a blank image, either white of black.
NOTE: This function will always return an image with `RGB` channel order for
color image and pixel range [0, 255].
Args:
height: Height of the returned image.
width: Width of the returned image.
channels: Number of channels. (default: 3)
is_black: Whether to return a black image or white image. (default: True)
"""
shape = (height, width, channels)
if is_black:
return np.zeros(shape, dtype=np.uint8)
return np.ones(shape, dtype=np.uint8) * 255
def load_image(path):
"""Loads an image from disk.
NOTE: This function will always return an image with `RGB` channel order for
color image and pixel range [0, 255].
Args:
path: Path to load the image from.
Returns:
An image with dtype `np.ndarray` or `None` if input `path` does not exist.
"""
if not os.path.isfile(path):
return None
image = cv2.imread(path)
return image[:, :, ::-1]
def save_image(path, image):
"""Saves an image to disk.
NOTE: The input image (if colorful) is assumed to be with `RGB` channel order
and pixel range [0, 255].
Args:
path: Path to save the image to.
image: Image to save.
"""
if image is None:
return
assert len(image.shape) == 3 and image.shape[2] in [1, 3]
cv2.imwrite(path, image[:, :, ::-1])
def resize_image(image, *args, **kwargs):
"""Resizes image.
This is a wrap of `cv2.resize()`.
NOTE: THe channel order of the input image will not be changed.
Args:
image: Image to resize.
"""
if image is None:
return None
assert image.ndim == 3 and image.shape[2] in [1, 3]
image = cv2.resize(image, *args, **kwargs)
if image.ndim == 2:
return image[:, :, np.newaxis]
return image
def add_text_to_image(image,
text='',
position=None,
font=cv2.FONT_HERSHEY_TRIPLEX,
font_size=1.0,
line_type=cv2.LINE_8,
line_width=1,
color=(255, 255, 255)):
"""Overlays text on given image.
NOTE: The input image is assumed to be with `RGB` channel order.
Args:
image: The image to overlay text on.
text: Text content to overlay on the image. (default: '')
position: Target position (bottom-left corner) to add text. If not set,
center of the image will be used by default. (default: None)
font: Font of the text added. (default: cv2.FONT_HERSHEY_TRIPLEX)
font_size: Font size of the text added. (default: 1.0)
line_type: Line type used to depict the text. (default: cv2.LINE_8)
line_width: Line width used to depict the text. (default: 1)
color: Color of the text added in `RGB` channel order. (default:
(255, 255, 255))
Returns:
An image with target text overlayed on.
"""
if image is None or not text:
return image
cv2.putText(img=image,
text=text,
org=position,
fontFace=font,
fontScale=font_size,
color=color,
thickness=line_width,
lineType=line_type,
bottomLeftOrigin=False)
return image
def fuse_images(images,
image_size=None,
row=0,
col=0,
is_row_major=True,
is_portrait=False,
row_spacing=0,
col_spacing=0,
border_left=0,
border_right=0,
border_top=0,
border_bottom=0,
black_background=True):
"""Fuses a collection of images into an entire image.
Args:
images: A collection of images to fuse. Should be with shape [num, height,
width, channels].
image_size: Int or two-element tuple. This field is used to resize the image
before fusing. `None` disables resizing. (default: None)
row: Number of rows used for image fusion. If not set, this field will be
automatically assigned based on `col` and total number of images.
(default: None)
col: Number of columns used for image fusion. If not set, this field will be
automatically assigned based on `row` and total number of images.
(default: None)
is_row_major: Whether the input images should be arranged row-major or
column-major. (default: True)
is_portrait: Only active when both `row` and `col` should be assigned
automatically. (default: False)
row_spacing: Space between rows. (default: 0)
col_spacing: Space between columns. (default: 0)
border_left: Width of left border. (default: 0)
border_right: Width of right border. (default: 0)
border_top: Width of top border. (default: 0)
border_bottom: Width of bottom border. (default: 0)
Returns:
The fused image.
Raises:
ValueError: If the input `images` is not with shape [num, height, width,
width].
"""
if images is None:
return images
if not images.ndim == 4:
raise ValueError(f'Input `images` should be with shape [num, height, '
f'width, channels], but {images.shape} is received!')
num, image_height, image_width, channels = images.shape
if image_size is not None:
if isinstance(image_size, int):
image_size = (image_size, image_size)
assert isinstance(image_size, (list, tuple)) and len(image_size) == 2
width, height = image_size
else:
height, width = image_height, image_width
row, col = get_grid_shape(num, row=row, col=col, is_portrait=is_portrait)
fused_height = (
height * row + row_spacing * (row - 1) + border_top + border_bottom)
fused_width = (
width * col + col_spacing * (col - 1) + border_left + border_right)
fused_image = get_blank_image(
fused_height, fused_width, channels=channels, is_black=black_background)
images = images.reshape(row, col, image_height, image_width, channels)
if not is_row_major:
images = images.transpose(1, 0, 2, 3, 4)
for i in range(row):
y = border_top + i * (height + row_spacing)
for j in range(col):
x = border_left + j * (width + col_spacing)
if image_size is not None:
image = cv2.resize(images[i, j], image_size)
else:
image = images[i, j]
fused_image[y:y + height, x:x + width] = image
return fused_image
def get_sortable_html_header(column_name_list, sort_by_ascending=False):
"""Gets header for sortable html page.
Basically, the html page contains a sortable table, where user can sort the
rows by a particular column by clicking the column head.
Example:
column_name_list = [name_1, name_2, name_3]
header = get_sortable_html_header(column_name_list)
footer = get_sortable_html_footer()
sortable_table = ...
html_page = header + sortable_table + footer
Args:
column_name_list: List of column header names.
sort_by_ascending: Default sorting order. If set as `True`, the html page
will be sorted by ascending order when the header is clicked for the first
time.
Returns:
A string, which represents for the header for a sortable html page.
"""
header = '\n'.join([
'<script type="text/javascript">',
'var column_idx;',
'var sort_by_ascending = ' + str(sort_by_ascending).lower() + ';',
'',
'function sorting(tbody, column_idx){',
' this.column_idx = column_idx;',
' Array.from(tbody.rows)',
' .sort(compareCells)',
' .forEach(function(row) { tbody.appendChild(row); })',
' sort_by_ascending = !sort_by_ascending;',
'}',
'',
'function compareCells(row_a, row_b) {',
' var val_a = row_a.cells[column_idx].innerText;',
' var val_b = row_b.cells[column_idx].innerText;',
' var flag = sort_by_ascending ? 1 : -1;',
' return flag * (val_a > val_b ? 1 : -1);',
'}',
'</script>',
'',
'<html>',
'',
'<head>',
'<style>',
' table {',
' border-spacing: 0;',
' border: 1px solid black;',
' }',
' th {',
' cursor: pointer;',
' }',
' th, td {',
' text-align: left;',
' vertical-align: middle;',
' border-collapse: collapse;',
' border: 0.5px solid black;',
' padding: 8px;',
' }',
' tr:nth-child(even) {',
' background-color: #d2d2d2;',
' }',
'</style>',
'</head>',
'',
'<body>',
'',
'<table>',
'<thead>',
'<tr>',
''])
for idx, column_name in enumerate(column_name_list):
header += f' <th onclick="sorting(tbody, {idx})">{column_name}</th>\n'
header += '</tr>\n'
header += '</thead>\n'
header += '<tbody id="tbody">\n'
return header
def get_sortable_html_footer():
"""Gets footer for sortable html page.
Check function `get_sortable_html_header()` for more details.
"""
return '</tbody>\n</table>\n\n</body>\n</html>\n'
def encode_image_to_html_str(image, image_size=None):
"""Encodes an image to html language.
Args:
image: The input image to encode. Should be with `RGB` channel order.
image_size: Int or two-element tuple. This field is used to resize the image
before encoding. `None` disables resizing. (default: None)
Returns:
A string which represents the encoded image.
"""
if image is None:
return ''
assert len(image.shape) == 3 and image.shape[2] in [1, 3]
# Change channel order to `BGR`, which is opencv-friendly.
image = image[:, :, ::-1]
# Resize the image if needed.
if image_size is not None:
if isinstance(image_size, int):
image_size = (image_size, image_size)
assert isinstance(image_size, (list, tuple)) and len(image_size) == 2
image = cv2.resize(image, image_size)
# Encode the image to html-format string.
encoded_image = cv2.imencode(".jpg", image)[1].tostring()
encoded_image_base64 = base64.b64encode(encoded_image).decode('utf-8')
html_str = f'<img src="data:image/jpeg;base64, {encoded_image_base64}"/>'
return html_str
class HtmlPageVisualizer(object):
"""Defines the html page visualizer.
This class can be used to visualize image results as html page. Basically, it
is based on an html-format sorted table with helper functions
`get_sortable_html_header()`, `get_sortable_html_footer()`, and
`encode_image_to_html_str()`. To simplify the usage, specifying the following
fields is enough to create a visualization page:
(1) num_rows: Number of rows of the table (header-row exclusive).
(2) num_cols: Number of columns of the table.
(3) header contents (optional): Title of each column.
NOTE: `grid_size` can be used to assign `num_rows` and `num_cols`
automatically.
Example:
html = HtmlPageVisualizer(num_rows, num_cols)
html.set_headers([...])
for i in range(num_rows):
for j in range(num_cols):
html.set_cell(i, j, text=..., image=...)
html.save('visualize.html')
"""
def __init__(self,
num_rows=0,
num_cols=0,
grid_size=0,
is_portrait=False,
viz_size=None):
if grid_size > 0:
num_rows, num_cols = get_grid_shape(
grid_size, row=num_rows, col=num_cols, is_portrait=is_portrait)
assert num_rows > 0 and num_cols > 0
self.num_rows = num_rows
self.num_cols = num_cols
self.viz_size = viz_size
self.headers = ['' for _ in range(self.num_cols)]
self.cells = [[{
'text': '',
'image': '',
} for _ in range(self.num_cols)] for _ in range(self.num_rows)]
def set_header(self, column_idx, content):
"""Sets the content of a particular header by column index."""
self.headers[column_idx] = content
def set_headers(self, contents):
"""Sets the contents of all headers."""
if isinstance(contents, str):
contents = [contents]
assert isinstance(contents, (list, tuple))
assert len(contents) == self.num_cols
for column_idx, content in enumerate(contents):
self.set_header(column_idx, content)
def set_cell(self, row_idx, column_idx, text='', image=None):
"""Sets the content of a particular cell.
Basically, a cell contains some text as well as an image. Both text and
image can be empty.
Args:
row_idx: Row index of the cell to edit.
column_idx: Column index of the cell to edit.
text: Text to add into the target cell.
image: Image to show in the target cell. Should be with `RGB` channel
order.
"""
self.cells[row_idx][column_idx]['text'] = text
self.cells[row_idx][column_idx]['image'] = encode_image_to_html_str(
image, self.viz_size)
def save(self, save_path):
"""Saves the html page."""
html = ''
for i in range(self.num_rows):
html += f'<tr>\n'
for j in range(self.num_cols):
text = self.cells[i][j]['text']
image = self.cells[i][j]['image']
if text:
html += f' <td>{text}<br><br>{image}</td>\n'
else:
html += f' <td>{image}</td>\n'
html += f'</tr>\n'
header = get_sortable_html_header(self.headers)
footer = get_sortable_html_footer()
with open(save_path, 'w') as f:
f.write(header + html + footer)
class VideoReader(object):
"""Defines the video reader.
This class can be used to read frames from a given video.
"""
def __init__(self, path):
"""Initializes the video reader by loading the video from disk."""
if not os.path.isfile(path):
raise ValueError(f'Video `{path}` does not exist!')
self.path = path
self.video = cv2.VideoCapture(path)
assert self.video.isOpened()
self.position = 0
self.length = int(self.video.get(cv2.CAP_PROP_FRAME_COUNT))
self.frame_height = int(self.video.get(cv2.CAP_PROP_FRAME_HEIGHT))
self.frame_width = int(self.video.get(cv2.CAP_PROP_FRAME_WIDTH))
self.fps = self.video.get(cv2.CAP_PROP_FPS)
def __del__(self):
"""Releases the opened video."""
self.video.release()
def read(self, position=None):
"""Reads a certain frame.
NOTE: The returned frame is assumed to be with `RGB` channel order.
Args:
position: Optional. If set, the reader will read frames from the exact
position. Otherwise, the reader will read next frames. (default: None)
"""
if position is not None and position < self.length:
self.video.set(cv2.CAP_PROP_POS_FRAMES, position)
self.position = position
success, frame = self.video.read()
self.position = self.position + 1
return frame[:, :, ::-1] if success else None
class VideoWriter(object):
"""Defines the video writer.
This class can be used to create a video.
NOTE: `.avi` and `DIVX` is the most recommended codec format since it does not
rely on other dependencies.
"""
def __init__(self, path, frame_height, frame_width, fps=24, codec='DIVX'):
"""Creates the video writer."""
self.path = path
self.frame_height = frame_height
self.frame_width = frame_width
self.fps = fps
self.codec = codec
self.video = cv2.VideoWriter(filename=path,
fourcc=cv2.VideoWriter_fourcc(*codec),
fps=fps,
frameSize=(frame_width, frame_height))
def __del__(self):
"""Releases the opened video."""
self.video.release()
def write(self, frame):
"""Writes a target frame.
NOTE: The input frame is assumed to be with `RGB` channel order.
"""
self.video.write(frame[:, :, ::-1])