forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
median_two_array.py
61 lines (44 loc) · 1.52 KB
/
median_two_array.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""
https://www.enjoyalgorithms.com/blog/median-of-two-sorted-arrays
"""
def find_median_sorted_arrays(nums1: list[int], nums2: list[int]) -> float:
"""
Find the median of two arrays.
Args:
nums1: The first array.
nums2: The second array.
Returns:
The median of the two arrays.
Examples:
>>> find_median_sorted_arrays([1, 3], [2])
2.0
>>> find_median_sorted_arrays([1, 2], [3, 4])
2.5
>>> find_median_sorted_arrays([0, 0], [0, 0])
0.0
>>> find_median_sorted_arrays([], [])
Traceback (most recent call last):
...
ValueError: Both input arrays are empty.
>>> find_median_sorted_arrays([], [1])
1.0
>>> find_median_sorted_arrays([-1000], [1000])
0.0
>>> find_median_sorted_arrays([-1.1, -2.2], [-3.3, -4.4])
-2.75
"""
if not nums1 and not nums2:
raise ValueError("Both input arrays are empty.")
# Merge the arrays into a single sorted array.
merged = sorted(nums1 + nums2)
total = len(merged)
if total % 2 == 1: # If the total number of elements is odd
return float(merged[total // 2]) # then return the middle element
# If the total number of elements is even, calculate
# the average of the two middle elements as the median.
middle1 = merged[total // 2 - 1]
middle2 = merged[total // 2]
return (float(middle1) + float(middle2)) / 2.0
if __name__ == "__main__":
import doctest
doctest.testmod()