forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sherman_morrison.py
265 lines (232 loc) · 7.99 KB
/
sherman_morrison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from __future__ import annotations
from typing import Any
class Matrix:
"""
<class Matrix>
Matrix structure.
"""
def __init__(self, row: int, column: int, default_value: float = 0) -> None:
"""
<method Matrix.__init__>
Initialize matrix with given size and default value.
Example:
>>> a = Matrix(2, 3, 1)
>>> a
Matrix consist of 2 rows and 3 columns
[1, 1, 1]
[1, 1, 1]
"""
self.row, self.column = row, column
self.array = [[default_value for _ in range(column)] for _ in range(row)]
def __str__(self) -> str:
"""
<method Matrix.__str__>
Return string representation of this matrix.
"""
# Prefix
s = f"Matrix consist of {self.row} rows and {self.column} columns\n"
# Make string identifier
max_element_length = 0
for row_vector in self.array:
for obj in row_vector:
max_element_length = max(max_element_length, len(str(obj)))
string_format_identifier = f"%{max_element_length}s"
# Make string and return
def single_line(row_vector: list[float]) -> str:
nonlocal string_format_identifier
line = "["
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector)
line += "]"
return line
s += "\n".join(single_line(row_vector) for row_vector in self.array)
return s
def __repr__(self) -> str:
return str(self)
def validate_indices(self, loc: tuple[int, int]) -> bool:
"""
<method Matrix.validate_indicies>
Check if given indices are valid to pick element from matrix.
Example:
>>> a = Matrix(2, 6, 0)
>>> a.validate_indices((2, 7))
False
>>> a.validate_indices((0, 0))
True
"""
if not (isinstance(loc, (list, tuple)) and len(loc) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__(self, loc: tuple[int, int]) -> Any:
"""
<method Matrix.__getitem__>
Return array[row][column] where loc = (row, column).
Example:
>>> a = Matrix(3, 2, 7)
>>> a[1, 0]
7
"""
assert self.validate_indices(loc)
return self.array[loc[0]][loc[1]]
def __setitem__(self, loc: tuple[int, int], value: float) -> None:
"""
<method Matrix.__setitem__>
Set array[row][column] = value where loc = (row, column).
Example:
>>> a = Matrix(2, 3, 1)
>>> a[1, 2] = 51
>>> a
Matrix consist of 2 rows and 3 columns
[ 1, 1, 1]
[ 1, 1, 51]
"""
assert self.validate_indices(loc)
self.array[loc[0]][loc[1]] = value
def __add__(self, another: Matrix) -> Matrix:
"""
<method Matrix.__add__>
Return self + another.
Example:
>>> a = Matrix(2, 1, -4)
>>> b = Matrix(2, 1, 3)
>>> a+b
Matrix consist of 2 rows and 1 columns
[-1]
[-1]
"""
# Validation
assert isinstance(another, Matrix)
assert self.row == another.row and self.column == another.column
# Add
result = Matrix(self.row, self.column)
for r in range(self.row):
for c in range(self.column):
result[r, c] = self[r, c] + another[r, c]
return result
def __neg__(self) -> Matrix:
"""
<method Matrix.__neg__>
Return -self.
Example:
>>> a = Matrix(2, 2, 3)
>>> a[0, 1] = a[1, 0] = -2
>>> -a
Matrix consist of 2 rows and 2 columns
[-3, 2]
[ 2, -3]
"""
result = Matrix(self.row, self.column)
for r in range(self.row):
for c in range(self.column):
result[r, c] = -self[r, c]
return result
def __sub__(self, another: Matrix) -> Matrix:
return self + (-another)
def __mul__(self, another: float | Matrix) -> Matrix:
"""
<method Matrix.__mul__>
Return self * another.
Example:
>>> a = Matrix(2, 3, 1)
>>> a[0,2] = a[1,2] = 3
>>> a * -2
Matrix consist of 2 rows and 3 columns
[-2, -2, -6]
[-2, -2, -6]
"""
if isinstance(another, (int, float)): # Scalar multiplication
result = Matrix(self.row, self.column)
for r in range(self.row):
for c in range(self.column):
result[r, c] = self[r, c] * another
return result
elif isinstance(another, Matrix): # Matrix multiplication
assert self.column == another.row
result = Matrix(self.row, another.column)
for r in range(self.row):
for c in range(another.column):
for i in range(self.column):
result[r, c] += self[r, i] * another[i, c]
return result
else:
msg = f"Unsupported type given for another ({type(another)})"
raise TypeError(msg)
def transpose(self) -> Matrix:
"""
<method Matrix.transpose>
Return self^T.
Example:
>>> a = Matrix(2, 3)
>>> for r in range(2):
... for c in range(3):
... a[r,c] = r*c
...
>>> a.transpose()
Matrix consist of 3 rows and 2 columns
[0, 0]
[0, 1]
[0, 2]
"""
result = Matrix(self.column, self.row)
for r in range(self.row):
for c in range(self.column):
result[c, r] = self[r, c]
return result
def sherman_morrison(self, u: Matrix, v: Matrix) -> Any:
"""
<method Matrix.sherman_morrison>
Apply Sherman-Morrison formula in O(n^2).
To learn this formula, please look this:
https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
This method returns (A + uv^T)^(-1) where A^(-1) is self. Returns None if it's
impossible to calculate.
Warning: This method doesn't check if self is invertible.
Make sure self is invertible before execute this method.
Example:
>>> ainv = Matrix(3, 3, 0)
>>> for i in range(3): ainv[i,i] = 1
...
>>> u = Matrix(3, 1, 0)
>>> u[0,0], u[1,0], u[2,0] = 1, 2, -3
>>> v = Matrix(3, 1, 0)
>>> v[0,0], v[1,0], v[2,0] = 4, -2, 5
>>> ainv.sherman_morrison(u, v)
Matrix consist of 3 rows and 3 columns
[ 1.2857142857142856, -0.14285714285714285, 0.3571428571428571]
[ 0.5714285714285714, 0.7142857142857143, 0.7142857142857142]
[ -0.8571428571428571, 0.42857142857142855, -0.0714285714285714]
"""
# Size validation
assert isinstance(u, Matrix) and isinstance(v, Matrix)
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
v_t = v.transpose()
numerator_factor = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertible
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def test1() -> None:
# a^(-1)
ainv = Matrix(3, 3, 0)
for i in range(3):
ainv[i, i] = 1
print(f"a^(-1) is {ainv}")
# u, v
u = Matrix(3, 1, 0)
u[0, 0], u[1, 0], u[2, 0] = 1, 2, -3
v = Matrix(3, 1, 0)
v[0, 0], v[1, 0], v[2, 0] = 4, -2, 5
print(f"u is {u}")
print(f"v is {v}")
print(f"uv^T is {u * v.transpose()}")
# Sherman Morrison
print(f"(a + uv^T)^(-1) is {ainv.sherman_morrison(u, v)}")
def test2() -> None:
import doctest
doctest.testmod()
test2()