forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sol1.py
52 lines (42 loc) · 1.48 KB
/
sol1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
"""
Project Euler Problem 87: https://projecteuler.net/problem=87
The smallest number expressible as the sum of a prime square, prime cube, and prime
fourth power is 28. In fact, there are exactly four numbers below fifty that can be
expressed in such a way:
28 = 22 + 23 + 24
33 = 32 + 23 + 24
49 = 52 + 23 + 24
47 = 22 + 33 + 24
How many numbers below fifty million can be expressed as the sum of a prime square,
prime cube, and prime fourth power?
"""
def solution(limit: int = 50000000) -> int:
"""
Return the number of integers less than limit which can be expressed as the sum
of a prime square, prime cube, and prime fourth power.
>>> solution(50)
4
"""
ret = set()
prime_square_limit = int((limit - 24) ** (1 / 2))
primes = set(range(3, prime_square_limit + 1, 2))
primes.add(2)
for p in range(3, prime_square_limit + 1, 2):
if p not in primes:
continue
primes.difference_update(set(range(p * p, prime_square_limit + 1, p)))
for prime1 in primes:
square = prime1 * prime1
for prime2 in primes:
cube = prime2 * prime2 * prime2
if square + cube >= limit - 16:
break
for prime3 in primes:
tetr = prime3 * prime3 * prime3 * prime3
total = square + cube + tetr
if total >= limit:
break
ret.add(total)
return len(ret)
if __name__ == "__main__":
print(f"{solution() = }")