You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
ValueError: Invalid parameter ratio for estimator SMOTE(). Check the list of available parameters with `estimator.get_params().keys()
you will get this error.
replacing that with smote__sampling_strategy should work but I am getting very bad output like this:-
`c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py:615: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py", line 598, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 262, in fit
Xt, yt = self._fit(X, y, **fit_params_steps)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 220, in _fit
X, y, fitted_transformer = fit_resample_one_cached(
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\joblib\memory.py", line 355, in call
return self.func(*args, **kwargs)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 388, in fit_resample_one
X_res, y_res = sampler.fit_resample(X, y, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\base.py", line 79, in fit_resample
self.sampling_strategy = check_sampling_strategy(
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 535, in check_sampling_strategy
_sampling_strategy_float(sampling_strategy, y, sampling_type).items()
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 373, in _sampling_strategy_float
raise ValueError(
ValueError: The specified ratio required to remove samples from the minority class while trying to generate new samples. Please increase the ratio.
warnings.warn("Estimator fit failed. The score on this train-test"
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py:615: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py", line 598, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 262, in fit
Xt, yt = self._fit(X, y, **fit_params_steps)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 220, in _fit
X, y, fitted_transformer = fit_resample_one_cached(
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\joblib\memory.py", line 355, in call
return self.func(*args, **kwargs)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 388, in fit_resample_one
X_res, y_res = sampler.fit_resample(X, y, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\base.py", line 79, in fit_resample
self.sampling_strategy = check_sampling_strategy(
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 535, in check_sampling_strategy
_sampling_strategy_float(sampling_strategy, y, sampling_type).items()
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 373, in _sampling_strategy_float
raise ValueError(
ValueError: The specified ratio required to remove samples from the minority class while trying to generate new samples. Please increase the ratio.
warnings.warn("Estimator fit failed. The score on this train-test"
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py:615: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py", line 598, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 262, in fit
Xt, yt = self._fit(X, y, **fit_params_steps)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 220, in _fit
X, y, fitted_transformer = fit_resample_one_cached(
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\joblib\memory.py", line 355, in call
return self.func(*args, **kwargs)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 388, in fit_resample_one
X_res, y_res = sampler.fit_resample(X, y, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\base.py", line 79, in fit_resample
self.sampling_strategy = check_sampling_strategy(
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 535, in check_sampling_strategy
_sampling_strategy_float(sampling_strategy, y, sampling_type).items()
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 373, in _sampling_strategy_float
raise ValueError(
ValueError: The specified ratio required to remove samples from the minority class while trying to generate new samples. Please increase the ratio.
warnings.warn("Estimator fit failed. The score on this train-test"
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py:615: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py", line 598, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 262, in fit
Xt, yt = self._fit(X, y, **fit_params_steps)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 220, in _fit
X, y, fitted_transformer = fit_resample_one_cached(
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\joblib\memory.py", line 355, in call
return self.func(*args, **kwargs)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 388, in fit_resample_one
X_res, y_res = sampler.fit_resample(X, y, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\base.py", line 79, in fit_resample
self.sampling_strategy = check_sampling_strategy(
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 535, in check_sampling_strategy
_sampling_strategy_float(sampling_strategy, y, sampling_type).items()
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 373, in _sampling_strategy_float
raise ValueError(
ValueError: The specified ratio required to remove samples from the minority class while trying to generate new samples. Please increase the ratio.
warnings.warn("Estimator fit failed. The score on this train-test"
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py:615: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py", line 598, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 262, in fit
Xt, yt = self._fit(X, y, **fit_params_steps)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 220, in _fit
X, y, fitted_transformer = fit_resample_one_cached(
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\joblib\memory.py", line 355, in call
return self.func(*args, **kwargs)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 388, in fit_resample_one
X_res, y_res = sampler.fit_resample(X, y, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\base.py", line 79, in fit_resample
self.sampling_strategy = check_sampling_strategy(
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 535, in check_sampling_strategy
_sampling_strategy_float(sampling_strategy, y, sampling_type).items()
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 373, in _sampling_strategy_float
raise ValueError(
ValueError: The specified ratio required to remove samples from the minority class while trying to generate new samples. Please increase the ratio.
warnings.warn("Estimator fit failed. The score on this train-test"
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py:615: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py", line 598, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 262, in fit
Xt, yt = self._fit(X, y, **fit_params_steps)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 220, in _fit
X, y, fitted_transformer = fit_resample_one_cached(
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\joblib\memory.py", line 355, in call
return self.func(*args, **kwargs)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 388, in fit_resample_one
X_res, y_res = sampler.fit_resample(X, y, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\base.py", line 79, in fit_resample
self.sampling_strategy = check_sampling_strategy(
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 535, in check_sampling_strategy
_sampling_strategy_float(sampling_strategy, y, sampling_type).items()
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 373, in _sampling_strategy_float
raise ValueError(
ValueError: The specified ratio required to remove samples from the minority class while trying to generate new samples. Please increase the ratio.
warnings.warn("Estimator fit failed. The score on this train-test"
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py:615: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py", line 598, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 262, in fit
Xt, yt = self._fit(X, y, **fit_params_steps)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 220, in _fit
X, y, fitted_transformer = fit_resample_one_cached(
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\joblib\memory.py", line 355, in call
return self.func(*args, **kwargs)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 388, in fit_resample_one
X_res, y_res = sampler.fit_resample(X, y, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\base.py", line 79, in fit_resample
self.sampling_strategy = check_sampling_strategy(
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 535, in check_sampling_strategy
_sampling_strategy_float(sampling_strategy, y, sampling_type).items()
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 373, in _sampling_strategy_float
raise ValueError(
ValueError: The specified ratio required to remove samples from the minority class while trying to generate new samples. Please increase the ratio.
warnings.warn("Estimator fit failed. The score on this train-test"
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py:615: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py", line 598, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 262, in fit
Xt, yt = self._fit(X, y, **fit_params_steps)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 220, in _fit
X, y, fitted_transformer = fit_resample_one_cached(
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\joblib\memory.py", line 355, in call
return self.func(*args, **kwargs)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 388, in fit_resample_one
X_res, y_res = sampler.fit_resample(X, y, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\base.py", line 79, in fit_resample
self.sampling_strategy = check_sampling_strategy(
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 535, in check_sampling_strategy
_sampling_strategy_float(sampling_strategy, y, sampling_type).items()
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 373, in _sampling_strategy_float
raise ValueError(
ValueError: The specified ratio required to remove samples from the minority class while trying to generate new samples. Please increase the ratio.
warnings.warn("Estimator fit failed. The score on this train-test"
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py:615: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py", line 598, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 262, in fit
Xt, yt = self._fit(X, y, **fit_params_steps)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 220, in _fit
X, y, fitted_transformer = fit_resample_one_cached(
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\joblib\memory.py", line 355, in call
return self.func(*args, **kwargs)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 388, in fit_resample_one
X_res, y_res = sampler.fit_resample(X, y, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\base.py", line 79, in fit_resample
self.sampling_strategy = check_sampling_strategy(
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 535, in check_sampling_strategy
_sampling_strategy_float(sampling_strategy, y, sampling_type).items()
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 373, in _sampling_strategy_float
raise ValueError(
ValueError: The specified ratio required to remove samples from the minority class while trying to generate new samples. Please increase the ratio.
warnings.warn("Estimator fit failed. The score on this train-test"
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_search.py:922: UserWarning: One or more of the test scores are non-finite: [ nan nan nan 0.1132337 0.17187154 0.18813707
0.22512345 0.28622813 0.29615575 0.31311128]
warnings.warn(
{'smote__sampling_strategy': 0.5}
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
ValueError: Invalid parameter ratio for estimator SMOTE(). Check the list of available parameters with `estimator.get_params().keys()
you will get this error.
replacing that with smote__sampling_strategy should work but I am getting very bad output like this:-
`c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py:615: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py", line 598, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 262, in fit
Xt, yt = self._fit(X, y, **fit_params_steps)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 220, in _fit
X, y, fitted_transformer = fit_resample_one_cached(
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\joblib\memory.py", line 355, in call
return self.func(*args, **kwargs)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 388, in fit_resample_one
X_res, y_res = sampler.fit_resample(X, y, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\base.py", line 79, in fit_resample
self.sampling_strategy = check_sampling_strategy(
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 535, in check_sampling_strategy
_sampling_strategy_float(sampling_strategy, y, sampling_type).items()
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 373, in _sampling_strategy_float
raise ValueError(
ValueError: The specified ratio required to remove samples from the minority class while trying to generate new samples. Please increase the ratio.
warnings.warn("Estimator fit failed. The score on this train-test"
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py:615: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py", line 598, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 262, in fit
Xt, yt = self._fit(X, y, **fit_params_steps)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 220, in _fit
X, y, fitted_transformer = fit_resample_one_cached(
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\joblib\memory.py", line 355, in call
return self.func(*args, **kwargs)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 388, in fit_resample_one
X_res, y_res = sampler.fit_resample(X, y, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\base.py", line 79, in fit_resample
self.sampling_strategy = check_sampling_strategy(
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 535, in check_sampling_strategy
_sampling_strategy_float(sampling_strategy, y, sampling_type).items()
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 373, in _sampling_strategy_float
raise ValueError(
ValueError: The specified ratio required to remove samples from the minority class while trying to generate new samples. Please increase the ratio.
warnings.warn("Estimator fit failed. The score on this train-test"
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py:615: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py", line 598, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 262, in fit
Xt, yt = self._fit(X, y, **fit_params_steps)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 220, in _fit
X, y, fitted_transformer = fit_resample_one_cached(
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\joblib\memory.py", line 355, in call
return self.func(*args, **kwargs)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 388, in fit_resample_one
X_res, y_res = sampler.fit_resample(X, y, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\base.py", line 79, in fit_resample
self.sampling_strategy = check_sampling_strategy(
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 535, in check_sampling_strategy
_sampling_strategy_float(sampling_strategy, y, sampling_type).items()
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 373, in _sampling_strategy_float
raise ValueError(
ValueError: The specified ratio required to remove samples from the minority class while trying to generate new samples. Please increase the ratio.
warnings.warn("Estimator fit failed. The score on this train-test"
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py:615: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py", line 598, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 262, in fit
Xt, yt = self._fit(X, y, **fit_params_steps)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 220, in _fit
X, y, fitted_transformer = fit_resample_one_cached(
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\joblib\memory.py", line 355, in call
return self.func(*args, **kwargs)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 388, in fit_resample_one
X_res, y_res = sampler.fit_resample(X, y, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\base.py", line 79, in fit_resample
self.sampling_strategy = check_sampling_strategy(
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 535, in check_sampling_strategy
_sampling_strategy_float(sampling_strategy, y, sampling_type).items()
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 373, in _sampling_strategy_float
raise ValueError(
ValueError: The specified ratio required to remove samples from the minority class while trying to generate new samples. Please increase the ratio.
warnings.warn("Estimator fit failed. The score on this train-test"
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py:615: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py", line 598, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 262, in fit
Xt, yt = self._fit(X, y, **fit_params_steps)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 220, in _fit
X, y, fitted_transformer = fit_resample_one_cached(
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\joblib\memory.py", line 355, in call
return self.func(*args, **kwargs)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 388, in fit_resample_one
X_res, y_res = sampler.fit_resample(X, y, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\base.py", line 79, in fit_resample
self.sampling_strategy = check_sampling_strategy(
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 535, in check_sampling_strategy
_sampling_strategy_float(sampling_strategy, y, sampling_type).items()
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 373, in _sampling_strategy_float
raise ValueError(
ValueError: The specified ratio required to remove samples from the minority class while trying to generate new samples. Please increase the ratio.
warnings.warn("Estimator fit failed. The score on this train-test"
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py:615: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py", line 598, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 262, in fit
Xt, yt = self._fit(X, y, **fit_params_steps)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 220, in _fit
X, y, fitted_transformer = fit_resample_one_cached(
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\joblib\memory.py", line 355, in call
return self.func(*args, **kwargs)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 388, in fit_resample_one
X_res, y_res = sampler.fit_resample(X, y, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\base.py", line 79, in fit_resample
self.sampling_strategy = check_sampling_strategy(
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 535, in check_sampling_strategy
_sampling_strategy_float(sampling_strategy, y, sampling_type).items()
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 373, in _sampling_strategy_float
raise ValueError(
ValueError: The specified ratio required to remove samples from the minority class while trying to generate new samples. Please increase the ratio.
warnings.warn("Estimator fit failed. The score on this train-test"
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py:615: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py", line 598, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 262, in fit
Xt, yt = self._fit(X, y, **fit_params_steps)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 220, in _fit
X, y, fitted_transformer = fit_resample_one_cached(
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\joblib\memory.py", line 355, in call
return self.func(*args, **kwargs)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 388, in fit_resample_one
X_res, y_res = sampler.fit_resample(X, y, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\base.py", line 79, in fit_resample
self.sampling_strategy = check_sampling_strategy(
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 535, in check_sampling_strategy
_sampling_strategy_float(sampling_strategy, y, sampling_type).items()
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 373, in _sampling_strategy_float
raise ValueError(
ValueError: The specified ratio required to remove samples from the minority class while trying to generate new samples. Please increase the ratio.
warnings.warn("Estimator fit failed. The score on this train-test"
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py:615: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py", line 598, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 262, in fit
Xt, yt = self._fit(X, y, **fit_params_steps)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 220, in _fit
X, y, fitted_transformer = fit_resample_one_cached(
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\joblib\memory.py", line 355, in call
return self.func(*args, **kwargs)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 388, in fit_resample_one
X_res, y_res = sampler.fit_resample(X, y, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\base.py", line 79, in fit_resample
self.sampling_strategy = check_sampling_strategy(
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 535, in check_sampling_strategy
_sampling_strategy_float(sampling_strategy, y, sampling_type).items()
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 373, in _sampling_strategy_float
raise ValueError(
ValueError: The specified ratio required to remove samples from the minority class while trying to generate new samples. Please increase the ratio.
warnings.warn("Estimator fit failed. The score on this train-test"
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py:615: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_validation.py", line 598, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 262, in fit
Xt, yt = self._fit(X, y, **fit_params_steps)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 220, in _fit
X, y, fitted_transformer = fit_resample_one_cached(
File "c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\joblib\memory.py", line 355, in call
return self.func(*args, **kwargs)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\pipeline.py", line 388, in fit_resample_one
X_res, y_res = sampler.fit_resample(X, y, **fit_params)
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\base.py", line 79, in fit_resample
self.sampling_strategy = check_sampling_strategy(
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 535, in check_sampling_strategy
_sampling_strategy_float(sampling_strategy, y, sampling_type).items()
File "C:\Users\BHAVYA\AppData\Roaming\Python\Python38\site-packages\imblearn\utils_validation.py", line 373, in _sampling_strategy_float
raise ValueError(
ValueError: The specified ratio required to remove samples from the minority class while trying to generate new samples. Please increase the ratio.
warnings.warn("Estimator fit failed. The score on this train-test"
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\model_selection_search.py:922: UserWarning: One or more of the test scores are non-finite: [ nan nan nan 0.1132337 0.17187154 0.18813707
0.22512345 0.28622813 0.29615575 0.31311128]
warnings.warn(
{'smote__sampling_strategy': 0.5}
c:\users\bhavya\appdata\local\programs\python\python38\lib\site-packages\sklearn\linear_model_logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(`
How can I solve this ?
The text was updated successfully, but these errors were encountered: