-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgrad_test.py
73 lines (61 loc) · 2.23 KB
/
grad_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import random
import numpy as np
from agents import *
np.random.seed(42)
random.seed(42)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = 'cuda'
def record_grad(data, label):
outputs = dict()
grads = dict()
channel_importance = dict()
def save_grad(idx):
def hook(grad):
grads[idx] = grad
return hook
def cal_importance(grads_list, outputs_list):
for n, m in agent.named_modules_list.items():
if isinstance(m, torch.nn.Conv2d):
grad = grads_list[n]
output = outputs_list[n]
importance = (grad * output).mean(dim=(2, 3))
#total_importance = torch.abs(importance).squeeze()
#channel_importance[n] += total_importance.data.cpu()
channel_importance[n] = importance
agent.optimaizer.zero_grad()
num_batch = data.shape[0]
data.requires_grad = True
x = data.to(device)
i = 0
for m in agent.model.features:
x = m(x)
if isinstance(m, torch.nn.Conv2d):
outputs[f'{i}.conv'] = x
outputs[f'{i}.conv'].register_hook(save_grad(f'{i}.conv'))
i += 1
else:
x = x.view(num_batch, -1)
x = agent.model.classifier(x)
one_hot = np.zeros((num_batch, x.shape[-1]), dtype=np.float64)
one_hot[:, label] = 1
one_hot = torch.from_numpy(one_hot).requires_grad_(True)
one_hot = torch.mean(one_hot.to(device) * x)
one_hot.backward(retain_graph=True)
cal_importance(grads, outputs)
return outputs, grads, channel_importance
agent = Vgg16QueryNet()
agent.model = agent.model.to(device)
agent.loader.make_one_class_set(sub_class=5, batch_size=8)
data, labels = next(iter(agent.loader.sub_train_loader))
data1, labels1 = data[:1], labels[:1]
data2, labels2 = data[1:2], labels[1:2]
data0, labels0 = data[:2], labels[:2]
outputs1, grads1, channel_importances1 = record_grad(data1, labels1)
print(channel_importances1['0.conv'].argsort())
outputs1, grads1, channel_importances1 = record_grad(data1, labels1)
print(channel_importances1['0.conv'].argsort())
# outputs, grads, channel_importances = record_grad(data, labels)