-
Notifications
You must be signed in to change notification settings - Fork 2
/
DE_config.yaml
232 lines (193 loc) · 6.56 KB
/
DE_config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# ---------------------- QUICK START ----------------------------------
# 1. Edit the organism defaults file (and, optionally, change the settings
# under `organism:`)
# 2. Configure the in_path_pattern under `pipeline:`. This depends on the
# location of the files with the count data.
# 3. Run `sea-snap covariate_file star` or
# `sea-snap covariate_file salmon` to automatically generate the covariate file.
# Remember to edit it.
# 4. Edit the `experiment:` section:
# - add the design formula (e.g. "~ group")
# - for each variable used in formula, add an entry in "columns:"
# listing the levels of that variable
# 5. Go to the `report:` section and choose which snippets you wish to run.
# 6. Test the configuration with `sea-snap DE l -np`
# 7. Run the pipeline locally (e.g. `sea-snap DE l --cores 4`), or
# on the cluster (`sea-snap DE --slurm c`).
# 1. --- organism annotation
organism_defaults: ### FILL HERE ### (e.g. Homo_sapiens.yaml)
organism:
__options__: [name, genus, taxon, files, star_index, salmon_index, R]
### OVERWRITE ### organism defaults (e.g. gtf, genome and indices)
# 2. --- general pipeline parameters
pipeline_param:
__options__: [out_path_pattern, log_path_pattern, in_path_pattern, report_snippets, input_choice]
in_path_pattern: ### FILL HERE ###
out_path_pattern: DE/{contrast}/{step}/out/{step}.{contrast}.{extension}
log_path_pattern: DE/{contrast}/{step}/report/{step}.{contrast}.{extension}
## Notes:
## The in_path_pattern can be the same as the out_path_pattern of the mapping pipeline
## You should be able to safely leave the predefined {out,log}_path_pattern[s].
# define choices for choose_input()
# select the one that suits you
input_choice:
mapping:
- import_gene_counts
- import_sf
- import_featurecounts
#--- information about experiment
experiment:
__options__: [covariate_file, design_formula, columns]
design_formula: ### FILL HERE ### (e.g. "~ group")
## the following allows you define the orders of levels in the factor
## variables
columns: ### FILL HERE ###
## example:
# columns:
# treatment:
# - control
# - treatment
# strain:
# - WT
# - KO
#--- creation of contrasts
contrasts:
__options__: [defaults, contrast_list]
## by default: run tmod and cluster_profiler, but not tmod_pca
defaults:
tmod: true
tmod_pca: false
cluster_profiler:
run: true
contrast_list:
- title: ### FILL HERE ### (unique title)
### One of coef, ratio or vector must be set for each contrast
coef:
ratio:
column:
numerator:
denominator:
vector:
#--- filtering of count matrices
filters:
__options__: [low_counts, experiment_blacklist, experiment_whitelist]
# at least 10 counts per row
low_counts: 10
# these two parameters allow a more fine grained filtering:
# setting them means that only genes will be kept which have at least
# `min_counts` in at least `min_count_n` samples
min_counts: 5
min_count_n: 3
#--- normalization parameters
normalization:
__options__: [DESeq2_parameters]
#--- QC parameters
QC:
__options__: [countMatrix_heatmap, sample_similarity, samples_pca]
#--- report parameters
report:
__options__: [defaults, report_snippets, snippet_parameters]
## to choose other snippet parameters,
## take a look at sea-snap/defaults/DE_config_defaults.yaml
## Additional directory with RMD snippets
path: "snippets"
defaults:
## this is a special construct
## to add the snippets for each
## of the contrasts
contrast:
- __list__: __contrasts__
contrast_list:
- Init_code.Rmd
- MA_plot.Rmd
- Result_table.Rmd
- Goseq_GO_table.Rmd
- tmod_contrast.Rmd
- cluster_profiler: __defaults__
cluster_profiler:
- Dot_plot.Rmd
- EnrichmentMap_plot.Rmd
- Upset_plot.Rmd
## comment snippets which you do not want to include
report_snippets:
- Covariate_table.Rmd
- NormalisationQC:
- PCA_plot.Rmd
- HierarchicalClustering_plot.Rmd
- SampleSimilarity_plot.Rmd
- NormExprDens_plot.Rmd
- DESeq2Norm_plot.Rmd
- CoxOutlier_plot.Rmd
# volcano plot for each contrast
- Volcano.Rmd
- contrast: __defaults__
# a summary of enrichment results for all contrasts
# in one place
- Functional:
- tmod.Rmd
- cluster_profiler_summary.Rmd
# - Disco.Rmd
# ---------------------------------------- configuration for tmod
# the following defines the gene set enrichment gene sets
tmod:
tmod_db_path: "./"
sort_by: pval
# for sorting order, you can also use pval_n and/or pval_p
# (pval negative sort, pval positive sort)
databases:
- name: tmod
file: tmod
title: "Co-expression gene sets (tmod)"
description:
Gene sets derived from clustering expression profiles from human blood
collected for various immune conditions. These gene sets are included
in the tmod package by default. Check tmod documentation for further
information.
taxonID: 9606
primaryID: SYMBOL
annotationDBI: org.Hs.eg.db
- name: msigdb_reactome
file: msigdb
title: "Reactome gene sets (MSigDB)"
description:
Reactome gene sets
the Molecular Signatures DB
(https://www.gsea-msigdb.org/gsea/msigdb/).
primaryID: ENTREZID
subset: "Category=C2,Subcategory=CP:REACTOME"
- name: msigdb_hallmark
file: msigdb
title: "Hallmark gene sets (MSigDB)"
description:
Hallmark gene sets
the Molecular Signatures DB
(https://www.gsea-msigdb.org/gsea/msigdb/).
primaryID: ENTREZID
subset: "Category=H"
- name: msigdb_kegg
file: msigdb
title: "KEGG pathways (MSigDB)"
description:
KEGG pathways from
the Molecular Signatures DB
(https://www.gsea-msigdb.org/gsea/msigdb/).
primaryID: ENTREZID
subset: "Category=C2,Subcategory=CP:KEGG"
- name: msigdb_mir
file: msigdb
title: "MIR targets (MSigDB)"
description:
MIR targets from
the Molecular Signatures DB
(https://www.gsea-msigdb.org/gsea/msigdb/).
primaryID: ENTREZID
subset: "Category=C3,Subcategory=MIR:MIRDB"
- name: msigdb_go_bp
file: msigdb
title: "GO Biological Process (MSigDB)"
description:
GO Biological Process definitions from
the Molecular Signatures DB
(https://www.gsea-msigdb.org/gsea/msigdb/).
primaryID: ENTREZID
subset: "Category=C5,Subcategory=GO:BP"