-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_dgg.py
226 lines (189 loc) · 7.66 KB
/
train_dgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import click as ck
import pandas as pd
from deepgo.utils import Ontology, propagate_annots
import torch as th
import numpy as np
from torch import nn
from torch.nn import functional as F
from torch import optim
import copy
from torch.utils.data import DataLoader, IterableDataset, TensorDataset
from itertools import cycle
import math
from dgl.nn import GraphConv
import dgl
from deepgo.torch_utils import FastTensorDataLoader
import csv
from torch.optim.lr_scheduler import MultiStepLR
from deepgo.data import load_ppi_data
from deepgo.metrics import compute_roc
from multiprocessing import Pool
from functools import partial
@ck.command()
@ck.option(
'--data-root', '-dr', default='data',
help='Data folder')
@ck.option(
'--ont', '-ont', default='mf', type=ck.Choice(['mf', 'bp', 'cc']),
help='GO subontology')
@ck.option(
'--test-data-name', '-td', default='test', type=ck.Choice(['test', 'nextprot']),
help='Test data set name')
@ck.option(
'--batch-size', '-bs', default=37,
help='Batch size for training')
@ck.option(
'--epochs', '-ep', default=256,
help='Training epochs')
@ck.option(
'--load', '-ld', is_flag=True, help='Load Model?')
@ck.option(
'--device', '-d', default='cuda:0',
help='Device')
def main(data_root, ont, test_data_name, batch_size, epochs, load, device):
go_file = f'{data_root}/go.obo'
model_file = f'{data_root}/{ont}/dgg.th'
terms_file = f'{data_root}/{ont}/terms.pkl'
out_file = f'{data_root}/{ont}/{test_data_name}_predictions_dgg.pkl'
go = Ontology(go_file, with_rels=True)
loss_func = nn.BCELoss()
features_length = None
features_column = 'interpros'
ppi_graph_file = f'ppi_{test_data_name}.bin'
test_data_file = f'{test_data_name}_data.pkl'
iprs_dict, terms_dict, graph, train_nids, valid_nids, test_nids, data, labels, test_df = load_ppi_data(
data_root, ont, features_length, features_column, test_data_file, ppi_graph_file)
n_terms = len(terms_dict)
features_length = len(iprs_dict)
valid_labels = labels[valid_nids].numpy()
test_labels = labels[test_nids].numpy()
labels = labels.to(device)
graph = graph.to(device)
train_nids = train_nids.to(device)
valid_nids = valid_nids.to(device)
test_nids = test_nids.to(device)
net = DeepGraphGOModel(features_length, n_terms, device).to(device)
sampler = dgl.dataloading.MultiLayerFullNeighborSampler(2)
train_dataloader = dgl.dataloading.DataLoader(
graph, train_nids, sampler,
batch_size=batch_size,
shuffle=False,
drop_last=False,
num_workers=0)
valid_dataloader = dgl.dataloading.DataLoader(
graph, valid_nids, sampler,
batch_size=batch_size,
shuffle=False,
drop_last=False,
num_workers=0)
test_dataloader = dgl.dataloading.DataLoader(
graph, test_nids, sampler,
batch_size=batch_size,
shuffle=False,
drop_last=False,
num_workers=0)
optimizer = th.optim.Adam(net.parameters(), lr=1e-3)
scheduler = MultiStepLR(optimizer, milestones=[1, 3,], gamma=0.1)
best_loss = 10000.0
if not load:
print('Training the model')
for epoch in range(epochs):
net.train()
train_loss = 0
train_steps = int(math.ceil(len(train_nids) / batch_size))
with ck.progressbar(length=train_steps, show_pos=True) as bar:
for input_nodes, output_nodes, blocks in train_dataloader:
bar.update(1)
logits = net(input_nodes, output_nodes, blocks)
batch_labels = labels[output_nodes]
loss = F.binary_cross_entropy(logits, batch_labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.detach().item()
train_loss /= train_steps
print('Validation')
net.eval()
with th.no_grad():
valid_steps = int(math.ceil(len(valid_nids) / batch_size))
valid_loss = 0
preds = []
with ck.progressbar(length=valid_steps, show_pos=True) as bar:
for input_nodes, output_nodes, blocks in valid_dataloader:
bar.update(1)
logits = net(input_nodes, output_nodes, blocks)
batch_labels = labels[output_nodes]
batch_loss = F.binary_cross_entropy(logits, batch_labels)
valid_loss += batch_loss.detach().item()
preds = np.append(preds, logits.detach().cpu().numpy())
valid_loss /= valid_steps
roc_auc = compute_roc(valid_labels, preds)
print(f'Epoch {epoch}: Loss - {train_loss}, Valid loss - {valid_loss}, AUC - {roc_auc}')
if valid_loss < best_loss:
best_loss = valid_loss
print('Saving model')
th.save(net.state_dict(), model_file)
scheduler.step()
log_file.close()
# Loading best model
print('Loading the best model')
net.load_state_dict(th.load(model_file))
net.eval()
with th.no_grad():
test_steps = int(math.ceil(len(test_nids) / batch_size))
test_loss = 0
preds = []
with ck.progressbar(length=test_steps, show_pos=True) as bar:
for input_nodes, output_nodes, blocks in test_dataloader:
bar.update(1)
logits = net(input_nodes, output_nodes, blocks)
batch_labels = labels[output_nodes]
batch_loss = F.binary_cross_entropy(logits, batch_labels)
test_loss += batch_loss.detach().cpu().item()
preds.append(logits.detach().cpu().numpy())
test_loss /= test_steps
preds = np.concatenate(preds)
roc_auc = compute_roc(test_labels, preds)
print(f'Test Loss - {test_loss}, AUC - {roc_auc}')
preds = list(preds)
# Propagate scores using ontology structure
with Pool(32) as p:
preds = p.map(partial(propagate_annots, go=go, terms_dict=terms_dict), preds)
test_df['preds'] = preds
test_df.to_pickle(out_file)
class MLPBlock(nn.Module):
def __init__(self, in_features, out_features, bias=True, layer_norm=False, dropout=0.5, activation=nn.ReLU):
super().__init__()
self.linear = nn.Linear(in_features, out_features, bias)
self.activation = activation()
self.layer_norm = nn.LayerNorm(out_features) if layer_norm else None
self.dropout = nn.Dropout(dropout) if dropout else None
def forward(self, x):
x = self.activation(self.linear(x))
if self.layer_norm:
x = self.layer_norm(x)
if self.dropout:
x = self.dropout(x)
return x
class DeepGraphGOModel(nn.Module):
def __init__(self, nb_iprs, nb_gos, device, hidden_dim=1024):
super().__init__()
self.nb_gos = nb_gos
self.net1 = MLPBlock(nb_iprs, hidden_dim)
self.conv1 = GraphConv(hidden_dim, hidden_dim)
self.conv2 = GraphConv(hidden_dim, hidden_dim)
input_length = hidden_dim
self.net2 = nn.Sequential(
nn.Linear(hidden_dim, nb_gos),
nn.Sigmoid())
def forward(self, input_nodes, output_nodes, blocks, residual=True):
g1 = blocks[0]
g2 = blocks[1]
features = g1.ndata['feat']['_N']
x = self.net1(features)
x = self.conv1(g1, x)
x = self.conv2(g2, x)
logits = self.net2(x)
return logits
if __name__ == '__main__':
main()