Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Missing file in output folder of mmvec paired-omics command #183

Open
natalie-melendez opened this issue Nov 21, 2024 · 8 comments
Open

Comments

@natalie-melendez
Copy link

Hi,

I recently starting using mmvec for microbial-metabolome integration and when performing the mmvec paired-omics command on qiime2-2020.6 it only generated two files: conditional_biplot.qza and conditionals.qza. However, it did not generate the model_stats.qza. How can I resolve this issue?

Thank you!

@mortonjt
Copy link
Collaborator

Hi @natalie-melendez its hard to see why the model_stats.qza wasn't generated. Do you run with the verbose flag? How long did it run? What command did you use? How many epoches was run? What summary interval was used?

@natalie-melendez
Copy link
Author

natalie-melendez commented Nov 22, 2024

Hi @mortonjt! Initially I did not run with the verbose flag. I ran it again using the verbose flag and this is what I got:

(qiime2-2020.6) megl5@x86_64-apple-darwin13 ~ % qiime mmvec paired-omics --i-microbes 16S-no-sings-filtered-rarified-N30-non-Bifido-glioma.qza --i-metabolites untargeted-metabolites-RGDOXDH-time-series-N30-glioma.qza --p-summary-interval 1 --output-dir mmvec-model-summary-N30-non-Bifido-glioma --verbose
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/biom/table.py:4068: FutureWarning: SparseDataFrame is deprecated and will be removed in a future version.
Use a regular DataFrame whose columns are SparseArrays instead.

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

return constructor(mat, index=index, columns=columns)
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/pandas/core/sparse/frame.py:257: FutureWarning: SparseSeries is deprecated and will be removed in a future version.
Use a Series with sparse values instead.

>>> series = pd.Series(pd.SparseArray(...))

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

sparse_index=BlockIndex(N, blocs, blens),
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/pandas/core/generic.py:4583: FutureWarning: SparseSeries is deprecated and will be removed in a future version.
Use a Series with sparse values instead.

>>> series = pd.Series(pd.SparseArray(...))

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

return self._constructor(new_data).finalize(self)
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/pandas/core/sparse/frame.py:854: FutureWarning: SparseDataFrame is deprecated and will be removed in a future version.
Use a regular DataFrame whose columns are SparseArrays instead.

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

default_kind=self._default_kind,
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/pandas/core/frame.py:3471: FutureWarning: SparseSeries is deprecated and will be removed in a future version.
Use a Series with sparse values instead.

>>> series = pd.Series(pd.SparseArray(...))

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

return klass(values, index=self.index, name=items, fastpath=True)
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/pandas/core/sparse/frame.py:785: FutureWarning: SparseDataFrame is deprecated and will be removed in a future version.
Use a regular DataFrame whose columns are SparseArrays instead.

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

return self._constructor(new_arrays, index=index, columns=columns).finalize(
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/pandas/core/ops/init.py:1641: FutureWarning: SparseSeries is deprecated and will be removed in a future version.
Use a Series with sparse values instead.

>>> series = pd.Series(pd.SparseArray(...))

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

return self._constructor(new_values, index=self.index, name=self.name)
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/pandas/core/sparse/frame.py:339: FutureWarning: SparseDataFrame is deprecated and will be removed in a future version.
Use a regular DataFrame whose columns are SparseArrays instead.

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

default_fill_value=self.default_fill_value,
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/pandas/core/generic.py:6289: FutureWarning: SparseDataFrame is deprecated and will be removed in a future version.
Use a regular DataFrame whose columns are SparseArrays instead.

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

return self._constructor(new_data).finalize(self)
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/pandas/core/generic.py:5884: FutureWarning: SparseSeries is deprecated and will be removed in a future version.
Use a Series with sparse values instead.

>>> series = pd.Series(pd.SparseArray(...))

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

return self._constructor(new_data).finalize(self)
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/pandas/core/generic.py:3606: FutureWarning: SparseDataFrame is deprecated and will be removed in a future version.
Use a regular DataFrame whose columns are SparseArrays instead.

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

result = self._constructor(new_data).finalize(self)
WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/q2/_method.py:49: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.

2024-11-22 14:39:48.905339: I tensorflow/core/platform/cpu_feature_guard.cc:145] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance critical operations: SSE4.1 SSE4.2 AVX AVX2 FMA
To enable them in non-MKL-DNN operations, rebuild TensorFlow with the appropriate compiler flags.
2024-11-22 14:39:48.905891: I tensorflow/core/common_runtime/process_util.cc:115] Creating new thread pool with default inter op setting: 16. Tune using inter_op_parallelism_threads for best performance.
WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:90: The name tf.log is deprecated. Please use tf.math.log instead.

WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:91: multinomial (from tensorflow.python.ops.random_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.random.categorical instead.
WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:102: The name tf.random_normal is deprecated. Please use tf.random.normal instead.

WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:118: Normal.init (from tensorflow.python.ops.distributions.normal) is deprecated and will be removed after 2019-01-01.
Instructions for updating:
The TensorFlow Distributions library has moved to TensorFlow Probability (https://github.com/tensorflow/probability). You should update all references to use tfp.distributions instead of tf.distributions.
WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/tensorflow_core/python/ops/distributions/normal.py:160: Distribution.init (from tensorflow.python.ops.distributions.distribution) is deprecated and will be removed after 2019-01-01.
Instructions for updating:
The TensorFlow Distributions library has moved to TensorFlow Probability (https://github.com/tensorflow/probability). You should update all references to use tfp.distributions instead of tf.distributions.
WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:135: Multinomial.init (from tensorflow.python.ops.distributions.multinomial) is deprecated and will be removed after 2019-01-01.
Instructions for updating:
The TensorFlow Distributions library has moved to TensorFlow Probability (https://github.com/tensorflow/probability). You should update all references to use tfp.distributions instead of tf.distributions.
WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:183: The name tf.summary.scalar is deprecated. Please use tf.compat.v1.summary.scalar instead.

WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:185: The name tf.summary.histogram is deprecated. Please use tf.compat.v1.summary.histogram instead.

WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:189: The name tf.summary.merge_all is deprecated. Please use tf.compat.v1.summary.merge_all instead.

WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:191: The name tf.summary.FileWriter is deprecated. Please use tf.compat.v1.summary.FileWriter instead.

WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:196: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.

WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/tensorflow_core/python/ops/clip_ops.py:301: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.where in 2.0, which has the same broadcast rule as np.where
WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:206: The name tf.global_variables_initializer is deprecated. Please use tf.compat.v1.global_variables_initializer instead.

WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:243: The name tf.train.Saver is deprecated. Please use tf.compat.v1.train.Saver instead.

100%|███████████████████████████████████████████████████████████| 3662/3662 [00:04<00:00, 824.97it/s]
Saved FeatureData[Conditional] to: mmvec-model-summary-N30-non-Bifido-glioma/conditionals.qza
Saved PCoAResults % Properties('biplot') to: mmvec-model-summary-N30-non-Bifido-glioma/conditional_biplot.qza

I'm fairly new with mmvec. I don't understand your question in reference to epoches. What is epoches? Also, I used the summary interval at 1 (same value as in the original mmvec github), however truthfully I do not know what this is for.

Also, when I run the command, in addition to creating the output folder the command creates another folder:

Screenshot 2024-11-22 at 2 56 09 PM

@mortonjt
Copy link
Collaborator

Try running the following code with 10000 epochs -- it'll make it run longer (and potentially make it more accurate).

qiime mmvec paired-omics --i-microbes 16S-no-sings-filtered-rarified-N30-non-Bifido-glioma.qza --i-metabolites untargeted-metabolites-RGDOXDH-time-series-N30-glioma.qza --p-summary-interval 1 --output-dir mmvec-model-summary-N30-non-Bifido-glioma --epochs 10000 --verbose

@natalie-melendez
Copy link
Author

I ran it with 10000 epochs, however, it still only generates 2 files.

(qiime2-2020.6) megl5@x86_64-apple-darwin13 ~ % qiime mmvec paired-omics --i-microbes 16S-no-sings-filtered-rarified-N30-non-Bifido-glioma.qza --i-metabolites untargeted-metabolites-RGDOXDH-time-series-N30-glioma.qza --p-summary-interval 1 --output-dir mmvec-model-summary-N30-non-Bifido-glioma --verbose --p-epochs 10000
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/biom/table.py:4068: FutureWarning: SparseDataFrame is deprecated and will be removed in a future version.
Use a regular DataFrame whose columns are SparseArrays instead.

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

return constructor(mat, index=index, columns=columns)
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/pandas/core/sparse/frame.py:257: FutureWarning: SparseSeries is deprecated and will be removed in a future version.
Use a Series with sparse values instead.

>>> series = pd.Series(pd.SparseArray(...))

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

sparse_index=BlockIndex(N, blocs, blens),
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/pandas/core/generic.py:4583: FutureWarning: SparseSeries is deprecated and will be removed in a future version.
Use a Series with sparse values instead.

>>> series = pd.Series(pd.SparseArray(...))

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

return self._constructor(new_data).finalize(self)
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/pandas/core/sparse/frame.py:854: FutureWarning: SparseDataFrame is deprecated and will be removed in a future version.
Use a regular DataFrame whose columns are SparseArrays instead.

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

default_kind=self._default_kind,
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/pandas/core/frame.py:3471: FutureWarning: SparseSeries is deprecated and will be removed in a future version.
Use a Series with sparse values instead.

>>> series = pd.Series(pd.SparseArray(...))

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

return klass(values, index=self.index, name=items, fastpath=True)
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/pandas/core/sparse/frame.py:785: FutureWarning: SparseDataFrame is deprecated and will be removed in a future version.
Use a regular DataFrame whose columns are SparseArrays instead.

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

return self._constructor(new_arrays, index=index, columns=columns).finalize(
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/pandas/core/ops/init.py:1641: FutureWarning: SparseSeries is deprecated and will be removed in a future version.
Use a Series with sparse values instead.

>>> series = pd.Series(pd.SparseArray(...))

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

return self._constructor(new_values, index=self.index, name=self.name)
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/pandas/core/sparse/frame.py:339: FutureWarning: SparseDataFrame is deprecated and will be removed in a future version.
Use a regular DataFrame whose columns are SparseArrays instead.

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

default_fill_value=self.default_fill_value,
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/pandas/core/generic.py:6289: FutureWarning: SparseDataFrame is deprecated and will be removed in a future version.
Use a regular DataFrame whose columns are SparseArrays instead.

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

return self._constructor(new_data).finalize(self)
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/pandas/core/generic.py:5884: FutureWarning: SparseSeries is deprecated and will be removed in a future version.
Use a Series with sparse values instead.

>>> series = pd.Series(pd.SparseArray(...))

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

return self._constructor(new_data).finalize(self)
/opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/pandas/core/generic.py:3606: FutureWarning: SparseDataFrame is deprecated and will be removed in a future version.
Use a regular DataFrame whose columns are SparseArrays instead.

See http://pandas.pydata.org/pandas-docs/stable/user_guide/sparse.html#migrating for more.

result = self._constructor(new_data).finalize(self)
WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/q2/_method.py:49: The name tf.Session is deprecated. Please use tf.compat.v1.Session instead.

2024-11-22 15:08:14.223568: I tensorflow/core/platform/cpu_feature_guard.cc:145] This TensorFlow binary is optimized with Intel(R) MKL-DNN to use the following CPU instructions in performance critical operations: SSE4.1 SSE4.2 AVX AVX2 FMA
To enable them in non-MKL-DNN operations, rebuild TensorFlow with the appropriate compiler flags.
2024-11-22 15:08:14.224320: I tensorflow/core/common_runtime/process_util.cc:115] Creating new thread pool with default inter op setting: 16. Tune using inter_op_parallelism_threads for best performance.
WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:90: The name tf.log is deprecated. Please use tf.math.log instead.

WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:91: multinomial (from tensorflow.python.ops.random_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.random.categorical instead.
WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:102: The name tf.random_normal is deprecated. Please use tf.random.normal instead.

WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:118: Normal.init (from tensorflow.python.ops.distributions.normal) is deprecated and will be removed after 2019-01-01.
Instructions for updating:
The TensorFlow Distributions library has moved to TensorFlow Probability (https://github.com/tensorflow/probability). You should update all references to use tfp.distributions instead of tf.distributions.
WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/tensorflow_core/python/ops/distributions/normal.py:160: Distribution.init (from tensorflow.python.ops.distributions.distribution) is deprecated and will be removed after 2019-01-01.
Instructions for updating:
The TensorFlow Distributions library has moved to TensorFlow Probability (https://github.com/tensorflow/probability). You should update all references to use tfp.distributions instead of tf.distributions.
WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:135: Multinomial.init (from tensorflow.python.ops.distributions.multinomial) is deprecated and will be removed after 2019-01-01.
Instructions for updating:
The TensorFlow Distributions library has moved to TensorFlow Probability (https://github.com/tensorflow/probability). You should update all references to use tfp.distributions instead of tf.distributions.
WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:183: The name tf.summary.scalar is deprecated. Please use tf.compat.v1.summary.scalar instead.

WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:185: The name tf.summary.histogram is deprecated. Please use tf.compat.v1.summary.histogram instead.

WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:189: The name tf.summary.merge_all is deprecated. Please use tf.compat.v1.summary.merge_all instead.

WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:191: The name tf.summary.FileWriter is deprecated. Please use tf.compat.v1.summary.FileWriter instead.

WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:196: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.

WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/tensorflow_core/python/ops/clip_ops.py:301: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.where in 2.0, which has the same broadcast rule as np.where
WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:206: The name tf.global_variables_initializer is deprecated. Please use tf.compat.v1.global_variables_initializer instead.

WARNING:tensorflow:From /opt/miniconda3/envs/qiime2-2020.6/lib/python3.6/site-packages/mmvec/multimodal.py:243: The name tf.train.Saver is deprecated. Please use tf.compat.v1.train.Saver instead.

100%|███████████████████████████████████████████████████████| 363400/363400 [08:39<00:00, 699.26it/s]
Saved FeatureData[Conditional] to: mmvec-model-summary-N30-non-Bifido-glioma/conditionals.qza
Saved PCoAResults % Properties('biplot') to: mmvec-model-summary-N30-non-Bifido-glioma/conditional_biplot.qza

@mortonjt
Copy link
Collaborator

H @natalie-melendez I'm not sure why that file isn't being generated. But it is not the first time this error have been reported

https://forum.qiime2.org/t/no-model-stats-qza-file/29044/16

I'd be curious to hear if the non-qiime2 version generated tensor flow results. When you run tensorboard --logdir ., does it generate a visualization? If that works, that is the workaround for model_stats.qza.

@natalie-melendez
Copy link
Author

Hi @mortonjt. Interestingly, yesterday I was looking at how to generate the heatmap with mmvec and I saw it needed the rank.qza file which I don't have and didn't know how to obtain it. Seeing the forum you have shared, I noticed that those files should have been generated inside the summary output folder during the paired-omics command?

I had a lot of issues downloading either qiime2-2020.6 or the mmvec standalone. Currently, I do not have the non-qiime2 version but I will try to download it and see if by using the non-qiime2 version I can generate those files.

When you say to run tensorboard --logdir ., were do I do that? I apologize if this is a simple question, I am new with this setup. Thank you!

@natalie-melendez
Copy link
Author

natalie-melendez commented Nov 25, 2024

Hi @mortonjt!

I tried installing the non-qiime2 mmvec version. However, even though it all seems like it installed properly and I am able to activate the environment, it gives me a traceback error. I'm seeing that the tensorflow-estimator package being installed is at version 2.6.0, while tensorflow and tensorflow-base is at 1.15.0. Should I downgrade the tensorflow-estimator?

(base) megl5@MEGLs-4-iMac ~ % conda create -n mmvec_env mamba python=3.7 -c conda-forge
Channels:

  • conda-forge
  • defaults
    Platform: osx-64
    Collecting package metadata (repodata.json): done
    Solving environment: done

Package Plan

environment location: /opt/miniconda3/envs/mmvec_env

added / updated specs:
- mamba
- python=3.7

The following NEW packages will be INSTALLED:

bzip2 conda-forge/osx-64::bzip2-1.0.8-hfdf4475_7
c-ares conda-forge/osx-64::c-ares-1.34.3-hf13058a_1
ca-certificates conda-forge/osx-64::ca-certificates-2024.8.30-h8857fd0_0
cpp-expected conda-forge/osx-64::cpp-expected-1.1.0-hb8565cd_0
fmt conda-forge/osx-64::fmt-11.0.2-h3c5361c_0
icu conda-forge/osx-64::icu-75.1-h120a0e1_0
krb5 conda-forge/osx-64::krb5-1.21.3-h37d8d59_0
libarchive conda-forge/osx-64::libarchive-3.7.4-h20e244c_0
libcurl conda-forge/osx-64::libcurl-8.10.1-h58e7537_0
libcxx conda-forge/osx-64::libcxx-19.1.4-hf95d169_0
libedit conda-forge/osx-64::libedit-3.1.20191231-h0678c8f_2
libev conda-forge/osx-64::libev-4.33-h10d778d_2
libffi conda-forge/osx-64::libffi-3.4.2-h0d85af4_5
libiconv conda-forge/osx-64::libiconv-1.17-hd75f5a5_2
libmamba conda-forge/osx-64::libmamba-2.0.4-hd41e4cc_0
libnghttp2 conda-forge/osx-64::libnghttp2-1.64.0-hc7306c3_0
libsolv conda-forge/osx-64::libsolv-0.7.30-h69d5d9b_0
libsqlite conda-forge/osx-64::libsqlite-3.47.0-h2f8c449_1
libssh2 conda-forge/osx-64::libssh2-1.11.1-h3dc7d44_0
libxml2 conda-forge/osx-64::libxml2-2.13.5-h495214b_0
libzlib conda-forge/osx-64::libzlib-1.3.1-hd23fc13_2
lz4-c conda-forge/osx-64::lz4-c-1.9.4-hf0c8a7f_0
lzo conda-forge/osx-64::lzo-2.10-h10d778d_1001
mamba conda-forge/osx-64::mamba-2.0.4-hcd709ef_0
ncurses conda-forge/osx-64::ncurses-6.5-hf036a51_1
nlohmann_json conda-forge/osx-64::nlohmann_json-3.11.3-hf036a51_1
openssl conda-forge/osx-64::openssl-3.4.0-hd471939_0
pip conda-forge/noarch::pip-24.0-pyhd8ed1ab_0
python conda-forge/osx-64::python-3.7.12-hf3644f1_100_cpython
readline conda-forge/osx-64::readline-8.2-h9e318b2_1
reproc conda-forge/osx-64::reproc-14.2.5.post0-h6e16a3a_0
reproc-cpp conda-forge/osx-64::reproc-cpp-14.2.5.post0-h240833e_0
setuptools conda-forge/noarch::setuptools-69.0.3-pyhd8ed1ab_0
simdjson conda-forge/osx-64::simdjson-3.10.1-h37c8870_0
spdlog conda-forge/osx-64::spdlog-1.14.1-h325aa07_1
sqlite conda-forge/osx-64::sqlite-3.47.0-h6285a30_1
tk conda-forge/osx-64::tk-8.6.13-h1abcd95_1
wheel conda-forge/noarch::wheel-0.42.0-pyhd8ed1ab_0
xz conda-forge/osx-64::xz-5.2.6-h775f41a_0
yaml-cpp conda-forge/osx-64::yaml-cpp-0.8.0-he965462_0
zstd conda-forge/osx-64::zstd-1.5.6-h915ae27_0

Proceed ([y]/n)? y

Downloading and Extracting Packages:

Preparing transaction: done
Verifying transaction: done
Executing transaction: done

To activate this environment, use

$ conda activate mmvec_env

To deactivate an active environment, use

$ conda deactivate

(base) megl5@MEGLs-4-iMac ~ %
(base) megl5@MEGLs-4-iMac ~ % conda activate mmvec_env
(mmvec_env) megl5@MEGLs-4-iMac ~ %
(mmvec_env) megl5@MEGLs-4-iMac ~ % mamba install mmvec -c conda-forge
warning libmamba 'repo.anaconda.com', a commercial channel hosted by Anaconda.com, is used.

warning libmamba Please make sure you understand Anaconda Terms of Services.

warning libmamba See: https://legal.anaconda.com/policies/en/
warning libmamba 'repo.anaconda.com', a commercial channel hosted by Anaconda.com, is used.

warning libmamba Please make sure you understand Anaconda Terms of Services.

warning libmamba See: https://legal.anaconda.com/policies/en/
warning libmamba 'repo.anaconda.com', a commercial channel hosted by Anaconda.com, is used.

warning libmamba Please make sure you understand Anaconda Terms of Services.

warning libmamba See: https://legal.anaconda.com/policies/en/
warning libmamba 'repo.anaconda.com', a commercial channel hosted by Anaconda.com, is used.

warning libmamba Please make sure you understand Anaconda Terms of Services.

warning libmamba See: https://legal.anaconda.com/policies/en/
pkgs/main/noarch 728.8kB @ 1.8MB/s 0.4s
pkgs/r/osx-64 694.3kB @ 1.7MB/s 0.3s
pkgs/r/noarch 2.1MB @ 2.7MB/s 0.7s
pkgs/main/osx-64 6.4MB @ 1.7MB/s 3.6s
conda-forge/noarch 17.5MB @ 3.9MB/s 4.4s
conda-forge/osx-64 35.0MB @ 6.1MB/s 5.7s

Pinned packages:

  • python=3.7

Transaction

Prefix: /opt/miniconda3/envs/mmvec_env

Updating specs:

  • mmvec

Package Version Build Channel Size
──────────────────────────────────────────────────────────────────────────────────────────────
Install:
──────────────────────────────────────────────────────────────────────────────────────────────

  • _tflow_select 2.3.0 mkl pkgs/main 3kB
  • absl-py 0.15.0 pyhd8ed1ab_0 conda-forge 100kB
  • appnope 0.1.4 pyhd8ed1ab_0 conda-forge 10kB
  • astor 0.8.1 pyh9f0ad1d_0 conda-forge 26kB
  • backcall 0.2.0 pyh9f0ad1d_0 conda-forge 14kB
  • backports 1.0 pyhd8ed1ab_4 conda-forge 7kB
  • backports.functools_lru_cache 2.0.0 pyhd8ed1ab_0 conda-forge 12kB
  • biom-format 2.1.12 py37h49e79e5_1 conda-forge 11MB
  • brotli 1.1.0 h00291cd_2 conda-forge 19kB
  • brotli-bin 1.1.0 h00291cd_2 conda-forge 17kB
  • brotli-python 1.0.9 py37h0582d14_7 conda-forge 392kB
  • cachecontrol 0.14.0 pyhd8ed1ab_1 conda-forge 24kB
  • cached-property 1.5.2 hd8ed1ab_1 conda-forge 4kB
  • cached_property 1.5.2 pyha770c72_1 conda-forge 11kB
  • certifi 2024.8.30 pyhd8ed1ab_0 conda-forge 164kB
  • cffi 1.15.1 py37h7346b73_1 conda-forge 224kB
  • charset-normalizer 3.4.0 pyhd8ed1ab_0 conda-forge 47kB
  • click 8.1.3 py37hf985489_0 conda-forge 148kB
  • colorama 0.4.6 pyhd8ed1ab_0 conda-forge 25kB
  • conda 4.12.0 py37hf985489_0 conda-forge 1MB
  • conda-package-handling 2.2.0 pyh38be061_0 conda-forge 255kB
  • conda-package-streaming 0.11.0 pyhd8ed1ab_0 conda-forge 21kB
  • cryptography 38.0.2 py37hbf3704f_1 conda-forge 1MB
  • cycler 0.11.0 pyhd8ed1ab_0 conda-forge 10kB
  • cython 0.29.32 py37hc568d09_0 conda-forge 2MB
  • decorator 5.1.1 pyhd8ed1ab_0 conda-forge 12kB
  • exceptiongroup 1.2.2 pyhd8ed1ab_0 conda-forge 20kB
  • fonttools 4.38.0 py37h8052db5_0 conda-forge 2MB
  • freetype 2.12.1 h60636b9_2 conda-forge 599kB
  • future 0.18.2 py37hf985489_5 conda-forge 726kB
  • gast 0.2.2 py_0 conda-forge 10kB
  • google-pasta 0.2.0 pyhd8ed1ab_1 conda-forge 49kB
  • grpc-cpp 1.48.1 h7df5b86_1 conda-forge 4MB
  • grpcio 1.48.1 py37hd7d2073_1 conda-forge 757kB
  • h5py 3.7.0 nompi_py37hdc5a9f1_101 conda-forge 1MB
  • hdf5 1.12.2 nompi_h48135f9_101 conda-forge 3MB
  • hdmedians 0.14.2 py37h49e79e5_2 conda-forge 134kB
  • idna 3.10 pyhd8ed1ab_0 conda-forge 50kB
  • importlib-metadata 4.11.4 py37hf985489_0 conda-forge 34kB
  • importlib_metadata 4.11.4 hd8ed1ab_0 conda-forge 4kB
  • iniconfig 2.0.0 pyhd8ed1ab_0 conda-forge 11kB
  • ipython 7.33.0 py37hf985489_0 conda-forge 1MB
  • jedi 0.19.1 pyhd8ed1ab_0 conda-forge 841kB
  • joblib 1.3.2 pyhd8ed1ab_0 conda-forge 221kB
  • jpeg 9e hb7f2c08_3 conda-forge 232kB
  • keras-applications 1.0.8 py_1 conda-forge 31kB
  • keras-preprocessing 1.1.2 pyhd8ed1ab_0 conda-forge 35kB
  • kiwisolver 1.4.4 py37h229a17a_0 conda-forge 65kB
  • lcms2 2.14 h90f4b2a_0 conda-forge 254kB
  • lerc 4.0.0 hb486fe8_0 conda-forge 290kB
  • libabseil 20220623.0 cxx17_h844d122_6 conda-forge 989kB
  • libaec 1.1.3 h73e2aa4_0 conda-forge 29kB
  • libblas 3.9.0 20_osx64_openblas conda-forge 15kB
  • libbrotlicommon 1.1.0 h00291cd_2 conda-forge 67kB
  • libbrotlidec 1.1.0 h00291cd_2 conda-forge 30kB
  • libbrotlienc 1.1.0 h00291cd_2 conda-forge 296kB
  • libcblas 3.9.0 20_osx64_openblas conda-forge 15kB
  • libdeflate 1.14 hb7f2c08_0 conda-forge 87kB
  • libgfortran 5.0.0 13_2_0_h97931a8_3 conda-forge 110kB
  • libgfortran5 13.2.0 h2873a65_3 conda-forge 2MB
  • liblapack 3.9.0 20_osx64_openblas conda-forge 15kB
  • libopenblas 0.3.25 openmp_hfef2a42_0 conda-forge 6MB
  • libpng 1.6.43 h92b6c6a_0 conda-forge 269kB
  • libprotobuf 3.20.1 hbc0c0cd_4 conda-forge 2MB
  • libtiff 4.4.0 h6268bbc_5 conda-forge 453kB
  • libwebp-base 1.4.0 h10d778d_0 conda-forge 355kB
  • libxcb 1.13 h0d85af4_1004 conda-forge 312kB
  • llvm-openmp 19.1.4 ha54dae1_0 conda-forge 305kB
  • lockfile 0.12.2 py_1 conda-forge 11kB
  • markdown 3.6 pyhd8ed1ab_0 conda-forge 78kB
  • matplotlib 3.5.3 py37hf985489_2 conda-forge 7kB
  • matplotlib-base 3.5.3 py37h3748cd6_2 conda-forge 8MB
  • matplotlib-inline 0.1.7 pyhd8ed1ab_0 conda-forge 15kB
  • mmvec 1.0.5 py_0 conda-forge 28kB
  • mock 5.1.0 pyhd8ed1ab_0 conda-forge 34kB
  • msgpack-python 1.0.4 py37h229a17a_0 conda-forge 82kB
  • munkres 1.1.4 pyh9f0ad1d_0 conda-forge 12kB
  • natsort 8.4.0 pyhd8ed1ab_0 conda-forge 37kB
  • numpy 1.21.6 py37h345d48f_0 conda-forge 6MB
  • openjpeg 2.5.0 h5d0d7b0_1 conda-forge 516kB
  • opt_einsum 3.3.0 pyhc1e730c_2 conda-forge 58kB
  • packaging 23.2 pyhd8ed1ab_0 conda-forge 49kB
  • pandas 0.25.3 py37h0a44026_0 pkgs/main 8MB
  • parso 0.8.4 pyhd8ed1ab_0 conda-forge 75kB
  • patsy 0.5.6 pyhd8ed1ab_0 conda-forge 187kB
  • pexpect 4.9.0 pyhd8ed1ab_0 conda-forge 54kB
  • pickleshare 0.7.5 py_1003 conda-forge 9kB
  • pillow 9.2.0 py37ha6ba2b9_2 conda-forge 47MB
  • pluggy 1.0.0 py37hf985489_3 conda-forge 26kB
  • prompt-toolkit 3.0.48 pyha770c72_0 conda-forge 270kB
  • protobuf 3.20.1 py37hc568d09_0 conda-forge 311kB
  • pthread-stubs 0.4 h00291cd_1002 conda-forge 8kB
  • ptyprocess 0.7.0 pyhd3deb0d_0 conda-forge 17kB
  • pycosat 0.6.4 py37h8052db5_0 conda-forge 114kB
  • pycparser 2.21 pyhd8ed1ab_0 conda-forge 103kB
  • pygments 2.17.2 pyhd8ed1ab_0 conda-forge 860kB
  • pyopenssl 23.2.0 pyhd8ed1ab_1 conda-forge 129kB
  • pyparsing 3.1.4 pyhd8ed1ab_0 conda-forge 90kB
  • pysocks 1.7.1 py37hf985489_5 conda-forge 28kB
  • pytest 7.4.4 pyhd8ed1ab_0 conda-forge 245kB
  • python-dateutil 2.9.0 pyhd8ed1ab_0 conda-forge 223kB
  • python_abi 3.7 4_cp37m conda-forge 6kB
  • pytz 2024.2 pyhd8ed1ab_0 conda-forge 187kB
  • re2 2022.06.01 hb486fe8_1 conda-forge 183kB
  • requests 2.32.2 pyhd8ed1ab_0 conda-forge 58kB
  • ruamel_yaml 0.15.80 py37h994c40b_1007 conda-forge 240kB
  • scikit-bio 0.5.5 py37h917ab60_1000 conda-forge 1MB
  • scikit-learn 1.0.2 py37h572704e_0 conda-forge 7MB
  • scipy 1.7.3 py37h4e3cf02_0 conda-forge 21MB
  • seaborn 0.12.2 hd8ed1ab_0 conda-forge 6kB
  • seaborn-base 0.12.2 pyhd8ed1ab_0 conda-forge 232kB
  • six 1.16.0 pyh6c4a22f_0 conda-forge 14kB
  • statsmodels 0.12.2 py37h032687b_0 conda-forge 11MB
  • tensorboard 1.15.0 py37_0 conda-forge 4MB
  • tensorflow 1.15.0 mkl_py37hb249377_0 pkgs/main 4kB
  • tensorflow-base 1.15.0 mkl_py37h032239d_0 pkgs/main 79MB
  • tensorflow-estimator 2.6.0 py37hfc69ec5_0 conda-forge 658kB
  • termcolor 1.1.0 pyhd8ed1ab_3 conda-forge 9kB
  • threadpoolctl 3.1.0 pyh8a188c0_0 conda-forge 18kB
  • tomli 2.0.2 pyhd8ed1ab_0 conda-forge 18kB
  • tornado 6.2 py37h994c40b_0 conda-forge 663kB
  • tqdm 4.67.1 pyhd8ed1ab_0 conda-forge 89kB
  • traitlets 5.9.0 pyhd8ed1ab_0 conda-forge 98kB
  • typing-extensions 4.7.1 hd8ed1ab_0 conda-forge 10kB
  • typing_extensions 4.7.1 pyha770c72_0 conda-forge 36kB
  • unicodedata2 14.0.0 py37h69ee0a8_1 conda-forge 509kB
  • urllib3 2.2.1 pyhd8ed1ab_0 conda-forge 95kB
  • wcwidth 0.2.10 pyhd8ed1ab_0 conda-forge 33kB
  • werkzeug 0.16.1 py_0 conda-forge 261kB
  • wrapt 1.14.1 py37h994c40b_0 conda-forge 47kB
  • xorg-libxau 1.0.11 h00291cd_1 conda-forge 13kB
  • xorg-libxdmcp 1.1.5 h00291cd_0 conda-forge 18kB
  • yaml 0.2.5 h0d85af4_2 conda-forge 84kB
  • zipp 3.15.0 pyhd8ed1ab_0 conda-forge 17kB
  • zlib 1.2.13 h87427d6_6 conda-forge 89kB
  • zstandard 0.18.0 py37h994c40b_0 conda-forge 793kB

Change:
──────────────────────────────────────────────────────────────────────────────────────────────

  • spdlog 1.14.1 h325aa07_1 conda-forge 171kB
  • spdlog 1.14.1 h0f84946_0 conda-forge 167kB

Downgrade:
──────────────────────────────────────────────────────────────────────────────────────────────

  • fmt 11.0.2 h3c5361c_0 conda-forge 184kB
  • fmt 10.2.1 h7728843_0 conda-forge 181kB
  • icu 75.1 h120a0e1_0 conda-forge 12MB
  • icu 73.2 hf5e326d_0 conda-forge 12MB
  • libcurl 8.10.1 h58e7537_0 conda-forge 403kB
  • libcurl 8.8.0 hf9fcc65_1 conda-forge 391kB
  • libmamba 2.0.4 hd41e4cc_0 conda-forge 2MB
  • libmamba 1.5.8 ha449628_0 conda-forge 1MB
  • libnghttp2 1.64.0 hc7306c3_0 conda-forge 607kB
  • libnghttp2 1.58.0 h64cf6d3_1 conda-forge 600kB
  • libsolv 0.7.30 h69d5d9b_0 conda-forge 416kB
  • libsolv 0.7.29 h4f92f52_0 conda-forge 416kB
  • libsqlite 3.47.0 h2f8c449_1 conda-forge 915kB
  • libsqlite 3.46.0 h1b8f9f3_0 conda-forge 909kB
  • libssh2 1.11.1 h3dc7d44_0 conda-forge 284kB
  • libssh2 1.11.0 hd019ec5_0 conda-forge 260kB
  • libxml2 2.13.5 h495214b_0 conda-forge 609kB
  • libxml2 2.12.7 h3e169fe_1 conda-forge 619kB
  • libzlib 1.3.1 hd23fc13_2 conda-forge 57kB
  • libzlib 1.2.13 h87427d6_6 conda-forge 57kB
  • mamba 2.0.4 hcd709ef_0 conda-forge 396kB
  • mamba 0.1.2 py37ha1cc60f_0 conda-forge 95kB
  • sqlite 3.47.0 h6285a30_1 conda-forge 930kB
  • sqlite 3.46.0 h28673e1_0 conda-forge 912kB

Summary:

Install: 136 packages
Change: 1 packages
Downgrade: 12 packages

Total download: 265MB

──────────────────────────────────────────────────────────────────────────────────────────────

Confirm changes: [Y/n] y

Transaction starting
icu 11.8MB @ 2.9MB/s 4.0s
biom-format 10.9MB @ 2.3MB/s 4.7s
scipy 20.6MB @ 1.5MB/s 13.3s
pillow 47.2MB @ 3.2MB/s 14.5s
scikit-learn 7.1MB @ 2.7MB/s 2.6s
pandas 8.2MB @ 968.7kB/s 8.5s
matplotlib-base 7.7MB @ 2.0MB/s 3.9s
tensorflow-base 79.4MB @ 4.5MB/s 17.6s
grpc-cpp 4.2MB @ 2.8MB/s 1.5s
numpy 6.3MB @ 3.3MB/s 1.9s
libprotobuf 2.4MB @ 3.2MB/s 0.7s
statsmodels 11.0MB @ 549.4kB/s 19.7s
tensorboard 4.0MB @ 1.8MB/s 2.2s
hdf5 3.2MB @ 2.0MB/s 1.6s
cython 2.1MB @ 2.9MB/s 0.7s
libgfortran5 1.6MB @ 2.3MB/s 0.7s
libopenblas 6.0MB @ 1.6MB/s 3.7s
libmamba 1.3MB @ 2.1MB/s 0.6s
cryptography 1.2MB @ 1.8MB/s 0.5s
scikit-bio 1.3MB @ 1.8MB/s 0.7s
fonttools 2.0MB @ 1.5MB/s 1.3s
ipython 1.2MB @ 1.7MB/s 0.6s
h5py 1.1MB @ 1.5MB/s 0.5s
libabseil 988.6kB @ 1.3MB/s 0.5s
conda 1.0MB @ 1.7MB/s 0.5s
sqlite 912.4kB @ 1.1MB/s 0.7s
jedi 841.3kB @ 2.6MB/s 0.3s
pygments 860.4kB @ 2.5MB/s 0.3s
libsqlite 908.6kB @ 2.2MB/s 0.4s
grpcio 756.9kB @ 1.8MB/s 0.4s
zstandard 792.7kB @ 1.1MB/s 0.6s
tornado 663.2kB @ 1.6MB/s 0.3s
future 726.5kB @ 1.9MB/s 0.4s
tensorflow-estimator 658.4kB @ 2.0MB/s 0.3s
libnghttp2 599.7kB @ 886.4kB/s 0.4s
libxml2 619.3kB @ 1.5MB/s 0.4s
openjpeg 515.5kB @ 1.4MB/s 0.3s
unicodedata2 508.7kB @ ??.?MB/s 0.3s
freetype 599.3kB @ 719.4kB/s 0.3s
libsolv 415.5kB @ 978.8kB/s 0.3s
libwebp-base 355.1kB @ 1.2MB/s 0.3s
libtiff 453.3kB @ 389.0kB/s 0.3s
libcurl 390.7kB @ 389.1kB/s 0.3s
brotli-python 392.2kB @ 433.5kB/s 0.3s
libxcb 312.4kB @ 568.3kB/s 0.2s
llvm-openmp 305.1kB @ 731.8kB/s 0.2s
libbrotlienc 296.4kB @ 1.2MB/s 0.2s
protobuf 311.0kB @ 245.7kB/s 0.2s
lerc 290.3kB @ 729.5kB/s 0.2s
prompt-toolkit 270.3kB @ 644.5kB/s 0.1s
werkzeug 261.3kB @ 732.0kB/s 0.2s
libssh2 259.6kB @ 802.8kB/s 0.2s
libpng 268.5kB @ 731.5kB/s 0.2s
conda-package-handling 255.1kB @ 732.1kB/s 0.2s
seaborn-base 231.9kB @ 852.3kB/s 0.1s
pytest 244.6kB @ 1.4MB/s 0.2s
jpeg 231.8kB @ 972.5kB/s 0.1s
lcms2 253.5kB @ 511.1kB/s 0.3s
patsy 187.2kB @ 539.1kB/s 0.2s
cffi 224.0kB @ 211.7kB/s 0.2s
ruamel_yaml 240.1kB @ 205.8kB/s 0.3s
python-dateutil 222.7kB @ 1.1MB/s 0.2s
joblib 221.2kB @ 977.8kB/s 0.2s
pytz 187.0kB @ 33.5kB/s 0.1s
certifi 163.8kB @ 644.4kB/s 0.1s
spdlog 167.2kB @ 742.8kB/s 0.2s
re2 182.9kB @ 109.2kB/s 0.2s
fmt 181.5kB @ 802.8kB/s 0.2s
click 148.1kB @ 852.0kB/s 0.2s
libgfortran 110.1kB @ 808.6kB/s 0.1s
pycparser 102.7kB @ 972.6kB/s 0.1s
hdmedians 133.5kB @ 275.4kB/s 0.3s
absl-py 100.3kB @ 539.3kB/s 0.2s
traitlets 98.4kB @ ??.?MB/s 0.1s
pycosat 114.0kB @ 231.1kB/s 0.4s
pyparsing 90.1kB @ ??.?MB/s 0.1s
urllib3 94.7kB @ 481.3kB/s 0.1s
mamba 95.3kB @ ??.?MB/s 0.2s
zlib 88.7kB @ ??.?MB/s 0.1s
tqdm 89.5kB @ ??.?MB/s 0.1s
yaml 84.2kB @ ??.?MB/s 0.1s
markdown 78.3kB @ 327.3kB/s 0.1s
libdeflate 86.6kB @ 322.4kB/s 0.2s
parso 75.2kB @ ??.?MB/s 0.1s
libbrotlicommon 67.3kB @ ??.?MB/s 0.1s
opt_einsum 58.0kB @ ??.?MB/s 0.1s
msgpack-python 82.4kB @ ??.?MB/s 0.3s
kiwisolver 64.8kB @ ??.?MB/s 0.2s
requests 57.9kB @ ??.?MB/s 0.1s
libzlib 57.4kB @ ??.?MB/s 0.1s
pexpect 53.6kB @ 154.4kB/s 0.1s
idna 49.8kB @ 317.5kB/s 0.1s
google-pasta 49.1kB @ 154.6kB/s 0.1s
packaging 49.5kB @ ??.?MB/s 0.1s
charset-normalizer 47.3kB @ ??.?MB/s 0.1s
wrapt 46.8kB @ ??.?MB/s 0.1s
natsort 37.3kB @ ??.?MB/s 0.1s
typing_extensions 36.3kB @ ??.?MB/s 0.1s
mock 33.6kB @ ??.?MB/s 0.1s
keras-preprocessing 35.2kB @ ??.?MB/s 0.1s
importlib-metadata 33.6kB @ ??.?MB/s 0.1s
libbrotlidec 29.9kB @ ??.?MB/s 0.1s
wcwidth 32.6kB @ 103.0kB/s 0.2s
keras-applications 30.6kB @ ??.?MB/s 0.1s
pyopenssl 129.0kB @ 77.8kB/s 1.3s
libaec 28.6kB @ 154.5kB/s 0.1s
astor 25.8kB @ ??.?MB/s 0.1s
mmvec 28.2kB @ ??.?MB/s 0.1s
pysocks 28.4kB @ ??.?MB/s 0.1s
pluggy 25.6kB @ ??.?MB/s 0.1s
conda-package-streaming 20.6kB @ ??.?MB/s 0.1s
colorama 25.2kB @ ??.?MB/s 0.1s
cachecontrol 23.7kB @ ??.?MB/s 0.1s
exceptiongroup 20.4kB @ ??.?MB/s 0.1s
xorg-libxdmcp 18.5kB @ ??.?MB/s 0.1s
brotli 19.4kB @ ??.?MB/s 0.1s
tomli 18.2kB @ ??.?MB/s 0.1s
zipp 17.2kB @ ??.?MB/s 0.1s
threadpoolctl 18.3kB @ ??.?MB/s 0.1s
ptyprocess 16.5kB @ ??.?MB/s 0.1s
brotli-bin 16.6kB @ ??.?MB/s 0.1s
libblas 14.7kB @ ??.?MB/s 0.1s
liblapack 14.7kB @ ??.?MB/s 0.1s
libcblas 14.6kB @ ??.?MB/s 0.1s
matplotlib-inline 14.6kB @ ??.?MB/s 0.1s
six 14.3kB @ ??.?MB/s 0.1s
backcall 13.7kB @ ??.?MB/s 0.1s
munkres 12.5kB @ ??.?MB/s 0.1s
xorg-libxau 13.2kB @ ??.?MB/s 0.1s
decorator 12.1kB @ ??.?MB/s 0.1s
iniconfig 11.1kB @ ??.?MB/s 0.1s
backports.functools_lru_cache 12.3kB @ ??.?MB/s 0.1s
cached_property 11.1kB @ ??.?MB/s 0.1s
appnope 10.2kB @ ??.?MB/s 0.1s
cycler 10.3kB @ ??.?MB/s 0.1s
typing-extensions 10.1kB @ ??.?MB/s 0.1s
lockfile 10.9kB @ ??.?MB/s 0.2s
gast 9.8kB @ ??.?MB/s 0.1s
pickleshare 9.3kB @ ??.?MB/s 0.1s
pthread-stubs 8.4kB @ ??.?MB/s 0.1s
termcolor 8.5kB @ ??.?MB/s 0.1s
backports 7.0kB @ ??.?MB/s 0.1s
matplotlib 7.3kB @ ??.?MB/s 0.1s
python_abi 6.5kB @ ??.?MB/s 0.1s
cached-property 4.1kB @ ??.?MB/s 0.1s
seaborn 6.3kB @ ??.?MB/s 0.1s
importlib_metadata 3.9kB @ ??.?MB/s 0.1s
tensorflow 4.0kB @ ??.?MB/s 0.1s
_tflow_select 3.4kB @ 18.0kB/s 0.2s
Unlinking icu-75.1-h120a0e1_0
Unlinking fmt-11.0.2-h3c5361c_0
Unlinking libzlib-1.3.1-hd23fc13_2
Unlinking spdlog-1.14.1-h325aa07_1
Unlinking libsqlite-3.47.0-h2f8c449_1
Unlinking libsolv-0.7.30-h69d5d9b_0
Unlinking libssh2-1.11.1-h3dc7d44_0
Unlinking libnghttp2-1.64.0-hc7306c3_0
Unlinking libxml2-2.13.5-h495214b_0
Unlinking sqlite-3.47.0-h6285a30_1
Unlinking libcurl-8.10.1-h58e7537_0
Unlinking libmamba-2.0.4-hd41e4cc_0
Unlinking mamba-2.0.4-hcd709ef_0
Linking icu-73.2-hf5e326d_0
Linking fmt-10.2.1-h7728843_0
Linking libzlib-1.2.13-h87427d6_6
Linking python_abi-3.7-4_cp37m
Linking llvm-openmp-19.1.4-ha54dae1_0
Linking yaml-0.2.5-h0d85af4_2
Linking jpeg-9e-hb7f2c08_3
Linking lerc-4.0.0-hb486fe8_0
Linking libdeflate-1.14-hb7f2c08_0
Linking libwebp-base-1.4.0-h10d778d_0
Linking pthread-stubs-0.4-h00291cd_1002
Linking xorg-libxau-1.0.11-h00291cd_1
Linking xorg-libxdmcp-1.1.5-h00291cd_0
Linking libbrotlicommon-1.1.0-h00291cd_2
Linking libaec-1.1.3-h73e2aa4_0
Linking libabseil-20220623.0-cxx17_h844d122_6
Linking re2-2022.06.01-hb486fe8_1
Linking spdlog-1.14.1-h0f84946_0
Linking libprotobuf-3.20.1-hbc0c0cd_4
Linking zlib-1.2.13-h87427d6_6
Linking libpng-1.6.43-h92b6c6a_0
Linking libsqlite-3.46.0-h1b8f9f3_0
Linking libsolv-0.7.29-h4f92f52_0
Linking libssh2-1.11.0-hd019ec5_0
Linking libnghttp2-1.58.0-h64cf6d3_1
Linking libxml2-2.12.7-h3e169fe_1
Linking wrapt-1.14.1-py37h994c40b_0
Linking future-0.18.2-py37hf985489_5
Linking unicodedata2-14.0.0-py37h69ee0a8_1
Linking cython-0.29.32-py37hc568d09_0
Linking tornado-6.2-py37h994c40b_0
Linking msgpack-python-1.0.4-py37h229a17a_0
Linking brotli-python-1.0.9-py37h0582d14_7
Linking pysocks-1.7.1-py37hf985489_5
Linking pycosat-0.6.4-py37h8052db5_0
Linking libgfortran5-13.2.0-h2873a65_3
Linking ruamel_yaml-0.15.80-py37h994c40b_1007
Linking libtiff-4.4.0-h6268bbc_5
Linking libxcb-1.13-h0d85af4_1004
Linking libbrotlienc-1.1.0-h00291cd_2
Linking libbrotlidec-1.1.0-h00291cd_2
Linking grpc-cpp-1.48.1-h7df5b86_1
Linking freetype-2.12.1-h60636b9_2
Linking sqlite-3.46.0-h28673e1_0
Linking libcurl-8.8.0-hf9fcc65_1
Linking libgfortran-5.0.0-13_2_0_h97931a8_3
Linking openjpeg-2.5.0-h5d0d7b0_1
Linking lcms2-2.14-h90f4b2a_0
Linking brotli-bin-1.1.0-h00291cd_2
Linking libmamba-1.5.8-ha449628_0
Linking hdf5-1.12.2-nompi_h48135f9_101
Linking libopenblas-0.3.25-openmp_hfef2a42_0
Linking pillow-9.2.0-py37ha6ba2b9_2
Linking brotli-1.1.0-h00291cd_2
Linking libblas-3.9.0-20_osx64_openblas
Linking libcblas-3.9.0-20_osx64_openblas
Linking liblapack-3.9.0-20_osx64_openblas
Linking numpy-1.21.6-py37h345d48f_0
Linking hdmedians-0.14.2-py37h49e79e5_2
Linking scipy-1.7.3-py37h4e3cf02_0
Linking mock-5.1.0-pyhd8ed1ab_0
Linking colorama-0.4.6-pyhd8ed1ab_0
Linking typing_extensions-4.7.1-pyha770c72_0
Linking certifi-2024.8.30-pyhd8ed1ab_0
Linking charset-normalizer-3.4.0-pyhd8ed1ab_0
Linking idna-3.10-pyhd8ed1ab_0
Linking pytz-2024.2-pyhd8ed1ab_0
Linking joblib-1.3.2-pyhd8ed1ab_0
Linking threadpoolctl-3.1.0-pyh8a188c0_0
Linking natsort-8.4.0-pyhd8ed1ab_0
Linking decorator-5.1.1-pyhd8ed1ab_0
Linking lockfile-0.12.2-py_1
Linking cycler-0.11.0-pyhd8ed1ab_0
Linking packaging-23.2-pyhd8ed1ab_0
Linking pyparsing-3.1.4-pyhd8ed1ab_0
Linking six-1.16.0-pyh6c4a22f_0
Linking exceptiongroup-1.2.2-pyhd8ed1ab_0
Linking iniconfig-2.0.0-pyhd8ed1ab_0
Linking tomli-2.0.2-pyhd8ed1ab_0
Linking appnope-0.1.4-pyhd8ed1ab_0
Linking pygments-2.17.2-pyhd8ed1ab_0
Linking traitlets-5.9.0-pyhd8ed1ab_0
Linking backcall-0.2.0-pyh9f0ad1d_0
Linking pickleshare-0.7.5-py_1003
Linking zipp-3.15.0-pyhd8ed1ab_0
Linking munkres-1.1.4-pyh9f0ad1d_0
Linking pycparser-2.21-pyhd8ed1ab_0
Linking cached_property-1.5.2-pyha770c72_1
Linking ptyprocess-0.7.0-pyhd3deb0d_0
Linking parso-0.8.4-pyhd8ed1ab_0
Linking backports-1.0-pyhd8ed1ab_4
Linking astor-0.8.1-pyh9f0ad1d_0
Linking gast-0.2.2-py_0
Linking termcolor-1.1.0-pyhd8ed1ab_3
Linking werkzeug-0.16.1-py_0
Linking urllib3-2.2.1-pyhd8ed1ab_0
Linking opt_einsum-3.3.0-pyhc1e730c_2
Linking tqdm-4.67.1-pyhd8ed1ab_0
Linking typing-extensions-4.7.1-hd8ed1ab_0
Linking patsy-0.5.6-pyhd8ed1ab_0
Linking keras-preprocessing-1.1.2-pyhd8ed1ab_0
Linking absl-py-0.15.0-pyhd8ed1ab_0
Linking google-pasta-0.2.0-pyhd8ed1ab_1
Linking python-dateutil-2.9.0-pyhd8ed1ab_0
Linking matplotlib-inline-0.1.7-pyhd8ed1ab_0
Linking cached-property-1.5.2-hd8ed1ab_1
Linking pexpect-4.9.0-pyhd8ed1ab_0
Linking jedi-0.19.1-pyhd8ed1ab_0
Linking backports.functools_lru_cache-2.0.0-pyhd8ed1ab_0
Linking requests-2.32.2-pyhd8ed1ab_0
Linking wcwidth-0.2.10-pyhd8ed1ab_0
Linking cachecontrol-0.14.0-pyhd8ed1ab_1
Linking prompt-toolkit-3.0.48-pyha770c72_0
Linking _tflow_select-2.3.0-mkl
Linking pandas-0.25.3-py37h0a44026_0
Linking scikit-learn-1.0.2-py37h572704e_0
Linking protobuf-3.20.1-py37hc568d09_0
Linking grpcio-1.48.1-py37hd7d2073_1
Linking importlib-metadata-4.11.4-py37hf985489_0
Linking fonttools-4.38.0-py37h8052db5_0
Linking cffi-1.15.1-py37h7346b73_1
Linking kiwisolver-1.4.4-py37h229a17a_0
Linking h5py-3.7.0-nompi_py37hdc5a9f1_101
Linking ipython-7.33.0-py37hf985489_0
Linking statsmodels-0.12.2-py37h032687b_0
Linking tensorflow-estimator-2.6.0-py37hfc69ec5_0
Linking click-8.1.3-py37hf985489_0
Linking zstandard-0.18.0-py37h994c40b_0
Linking cryptography-38.0.2-py37hbf3704f_1
Linking matplotlib-base-3.5.3-py37h3748cd6_2
Linking biom-format-2.1.12-py37h49e79e5_1
Linking matplotlib-3.5.3-py37hf985489_2
Linking markdown-3.6-pyhd8ed1ab_0
Linking importlib_metadata-4.11.4-hd8ed1ab_0
Linking keras-applications-1.0.8-py_1
Linking conda-package-streaming-0.11.0-pyhd8ed1ab_0
Linking pyopenssl-23.2.0-pyhd8ed1ab_1
Linking seaborn-base-0.12.2-pyhd8ed1ab_0
Linking conda-package-handling-2.2.0-pyh38be061_0
Linking seaborn-0.12.2-hd8ed1ab_0
Linking tensorboard-1.15.0-py37_0
Linking pluggy-1.0.0-py37hf985489_3
Linking conda-4.12.0-py37hf985489_0
Linking mamba-0.1.2-py37ha1cc60f_0
Linking tensorflow-base-1.15.0-mkl_py37h032239d_0
Linking tensorflow-1.15.0-mkl_py37hb249377_0
Linking pytest-7.4.4-pyhd8ed1ab_0
Linking scikit-bio-0.5.5-py37h917ab60_1000
Linking mmvec-1.0.5-py_0

Transaction finished

(mmvec_env) megl5@MEGLs-4-iMac ~ %
(mmvec_env) megl5@MEGLs-4-iMac ~ % mmvec --help
Traceback (most recent call last):
File "/opt/miniconda3/envs/mmvec_env/bin/mmvec", line 18, in
from tensorflow.contrib.distributions import Multinomial, Normal
File "/opt/miniconda3/envs/mmvec_env/lib/python3.7/site-packages/tensorflow/init.py", line 50, in getattr
module = self._load()
File "/opt/miniconda3/envs/mmvec_env/lib/python3.7/site-packages/tensorflow/init.py", line 44, in _load
module = _importlib.import_module(self.name)
File "/opt/miniconda3/envs/mmvec_env/lib/python3.7/importlib/init.py", line 127, in import_module
return _bootstrap._gcd_import(name[level:], package, level)
File "/opt/miniconda3/envs/mmvec_env/lib/python3.7/site-packages/tensorflow_core/contrib/init.py", line 39, in
from tensorflow.contrib import compiler
File "/opt/miniconda3/envs/mmvec_env/lib/python3.7/site-packages/tensorflow_core/contrib/compiler/init.py", line 21, in
from tensorflow.contrib.compiler import jit
File "/opt/miniconda3/envs/mmvec_env/lib/python3.7/site-packages/tensorflow_core/contrib/compiler/init.py", line 22, in
from tensorflow.contrib.compiler import xla
File "/opt/miniconda3/envs/mmvec_env/lib/python3.7/site-packages/tensorflow_core/contrib/compiler/xla.py", line 22, in
from tensorflow.python.estimator import model_fn as model_fn_lib
File "/opt/miniconda3/envs/mmvec_env/lib/python3.7/site-packages/tensorflow_core/python/estimator/model_fn.py", line 26, in
from tensorflow_estimator.python.estimator import model_fn
File "/opt/miniconda3/envs/mmvec_env/lib/python3.7/site-packages/tensorflow_estimator/init.py", line 10, in
from tensorflow_estimator._api.v1 import estimator
File "/opt/miniconda3/envs/mmvec_env/lib/python3.7/site-packages/tensorflow_estimator/_api/v1/estimator/init.py", line 10, in
from tensorflow_estimator._api.v1.estimator import experimental
File "/opt/miniconda3/envs/mmvec_env/lib/python3.7/site-packages/tensorflow_estimator/_api/v1/estimator/experimental/init.py", line 10, in
from tensorflow_estimator.python.estimator.canned.dnn import dnn_logit_fn_builder
File "/opt/miniconda3/envs/mmvec_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/canned/dnn.py", line 27, in
from tensorflow_estimator.python.estimator import estimator
File "/opt/miniconda3/envs/mmvec_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/estimator.py", line 36, in
from tensorflow.python.profiler import trace
ImportError: cannot import name 'trace' from 'tensorflow.python.profiler' (/opt/miniconda3/envs/mmvec_env/lib/python3.7/site-packages/tensorflow_core/python/profiler/init.py)

@natalie-melendez
Copy link
Author

Update: I downgraded tensorflow-estimator from 2.6.0 to 1.15.1. with the command pip install tensorflow-estimator==1.15.1

This resolved the tensorflow issue and no longer was I receiving the previous message. I proceeded to run the mmvec paired-omics command on the non-qiime2 version of mmvec and the output folder created had the following files:

image

However, I am not sure how to visualize these files. I tried running the tensoreboard --logdir . command however, I get this error message:

Screenshot 2024-11-26 at 10 40 43 AM

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants