-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcartagena_plot.py
137 lines (113 loc) · 6.61 KB
/
cartagena_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from matplotlib.dates import date2num, num2date
from matplotlib.colors import ListedColormap
from matplotlib import dates as mdates
from matplotlib import pyplot as plt
from matplotlib.patches import Patch
from matplotlib import ticker
from functions.adjust_cases_functions import prepare_cases
from functions.general_utils import get_bool
from models.seird_model import SEIRD
import matplotlib.pyplot as plt
import scipy.io as sio
import pandas as pd
import numpy as np
import os
from global_config import config
import sys
dict_map = {'0-39': (0, 39), '40-49': (40,49),
'50-59': (50,59), '60-69': (60,69), '70-90+': (70,200) }
NGroups = len(dict_map)
def age_group(val, dict_map):
for ag in dict_map:
if dict_map[ag][0] <= val <= dict_map[ag][1]:
return ag
return 'NaN'
poly_run = 13001
data_dir = config.get_property('data_dir_covid')
geo_dir = config.get_property('geo_dir')
data_dir_mnps = config.get_property('data_dir_col')
results_dir = config.get_property('results_dir')
agglomerated_folder = os.path.join(data_dir, 'data_stages', 'colombia', 'agglomerated', 'geometry' )
polygons = pd.read_csv(os.path.join(agglomerated_folder, 'polygons.csv')).set_index('poly_id')
polygons = polygons.loc[poly_run]
data = pd.read_csv(os.path.join(agglomerated_folder, 'cases.csv'), parse_dates=['date_time'],
dayfirst=True).set_index('poly_id').loc[poly_run].set_index('date_time')
data = data.resample('D').sum().fillna(0)[['num_cases','num_diseased']]
data = prepare_cases(data, col='num_cases', cutoff=0) # .rename({'smoothed_num_cases':'num_cases'})
data = prepare_cases(data, col='num_diseased', cutoff=0) # .rename({'smoothed_num_cases':'num_cases'})
data = data.rename(columns={'smoothed_num_cases': 'confirmed', 'smoothed_num_diseased':'death'})[['confirmed', 'death']]
raw_folder = os.path.join(data_dir, 'data_stages', 'colombia', 'raw', 'cases' )
cases_raw_df = pd.read_csv(os.path.join(raw_folder, 'cases_raw.csv'), parse_dates =['Fecha de inicio de síntomas', 'Fecha de diagnóstico', 'Fecha de muerte'], dayfirst=True) #.set_index('poly_id')
cases_raw_df['age_group'] = cases_raw_df['Edad'].apply(lambda x: age_group( x, dict_map) )
cases_raw_df = cases_raw_df[['Código DIVIPOLA municipio', 'Nombre municipio', 'Nombre departamento', 'age_group', 'Sexo' ,'Fecha de inicio de síntomas', 'Fecha de diagnóstico', 'Fecha de muerte']]
cases_raw_df = cases_raw_df.rename(columns={'Código DIVIPOLA municipio': 'poly_id'})
list_df_ages = []
for age_g in dict_map.keys():
cases_agei = cases_raw_df[cases_raw_df.age_group==age_g].copy()
cases_agei['num_cases'] = 1
cases_agei['num_diseased'] = 1
cases_agei_num_cases = cases_agei.copy().groupby(['Fecha de diagnóstico','poly_id']).sum().reset_index().rename(columns={'Fecha de diagnóstico': 'date_time'})[['date_time','poly_id','num_cases']]
cases_agei_num_deaths = cases_agei.copy()[['Fecha de muerte','poly_id','num_diseased']].dropna().groupby(['Fecha de muerte','poly_id']).sum().reset_index().rename(columns={'Fecha de muerte': 'date_time'})
new_df = pd.merge(cases_agei_num_cases, cases_agei_num_deaths, how='outer').fillna(0)
new_df = new_df.groupby(['date_time','poly_id']).sum().reset_index().set_index('poly_id')
new_df = prepare_cases(new_df, col='num_cases', cutoff=0) # .rename({'smoothed_num_cases':'num_cases'})
new_df = prepare_cases(new_df, col='num_diseased', cutoff=0) # .rename({'smoothed_num_cases':'num_cases'})
new_df = new_df.rename(columns={'smoothed_num_cases': 'confirmed', 'smoothed_num_diseased':'death'})[['date_time','confirmed', 'death']]
new_df['age_group'] = age_g
list_df_ages.append(new_df)
cases_df = pd.read_csv(os.path.join(agglomerated_folder, 'cases.csv'), parse_dates=['date_time'],
dayfirst=True)
cases_df_agg = cases_df.reset_index()[['poly_id','date_time', 'num_cases', 'num_diseased']].rename(columns={'num_cases': 'confirmed', 'num_diseased':'death'})
cases_df_agg['age_group'] = 'agg'
list_df_ages.append(cases_df_agg.set_index('poly_id'))
df_cases_ages = pd.concat(list_df_ages)
df_cases_ages = df_cases_ages.loc[poly_run]
import seaborn as sns
fig, ax = plt.subplots(1, 1, figsize=(12.5, 7))
sns.lineplot(ax=ax, data=df_cases_ages[df_cases_ages.age_group!='agg'], x='date_time', y='confirmed', hue='age_group', palette='flare')
ax.xaxis.set_major_locator(mdates.MonthLocator())
ax.xaxis.set_major_formatter(mdates.DateFormatter('%b'))
ax.xaxis.set_minor_locator(mdates.DayLocator())
ax.xaxis.set_major_locator(mdates.WeekdayLocator())
ax.xaxis.set_major_locator(mdates.MonthLocator())
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.grid(which='major', axis='y', c='k', alpha=.1, zorder=-2)
ax.tick_params(axis='both', labelsize=15)
ax.yaxis.set_major_formatter(ticker.StrMethodFormatter("{x:.1f}"))
plt.show()
fig, ax = plt.subplots(1, 1, figsize=(12.5, 7))
sns.lineplot(ax=ax, data=df_cases_ages[df_cases_ages.age_group!='agg'], x='date_time', y='death', hue='age_group', palette='crest')
ax.xaxis.set_major_locator(mdates.MonthLocator())
ax.xaxis.set_major_formatter(mdates.DateFormatter('%b'))
ax.xaxis.set_minor_locator(mdates.DayLocator())
ax.xaxis.set_major_locator(mdates.WeekdayLocator())
ax.xaxis.set_major_locator(mdates.MonthLocator())
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.grid(which='major', axis='y', c='k', alpha=.1, zorder=-2)
ax.tick_params(axis='both', labelsize=15)
ax.yaxis.set_major_formatter(ticker.StrMethodFormatter("{x:.1f}"))
plt.show()
movement_df = pd.read_csv( os.path.join(agglomerated_folder, 'movement_range.csv' ), parse_dates=['date_time'])
movement_df = movement_df[movement_df.poly_id==poly_run]
movement_df['movement_change'] = 100*movement_df['movement_change']
fig, ax = plt.subplots(1, 1, figsize=(12.5, 7))
sns.lineplot(ax=ax, data=movement_df, x='date_time', y='movement_change', color='k')
ax.xaxis.set_major_locator(mdates.MonthLocator())
ax.xaxis.set_major_formatter(mdates.DateFormatter('%b-%y'))
ax.xaxis.set_minor_locator(mdates.DayLocator())
ax.xaxis.set_major_locator(mdates.WeekdayLocator())
ax.xaxis.set_major_locator(mdates.MonthLocator())
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.grid(which='major', axis='y', c='k', alpha=.1, zorder=-2)
ax.tick_params(axis='both', labelsize=15)
ax.yaxis.set_major_formatter(ticker.StrMethodFormatter("{x:.0f} %"))
plt.show()