forked from BorisTheBrave/mc-dc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dual_contour_2d.py
132 lines (102 loc) · 3.96 KB
/
dual_contour_2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
"""Provides a function for performing 2D Dual Contouring"""
import math
from common import Edge, adapt, frange
from settings import ADAPTIVE, XMIN, XMAX, YMIN, YMAX, CELL_SIZE
from utils_2d import V2, make_svg
from qef import solve_qef_2d
def dual_contour_2d_find_best_vertex(f, f_normal, x, y):
if not ADAPTIVE:
return V2(x+0.5 * CELL_SIZE, y+0.5 * CELL_SIZE)
# Evaluate
x0y0 = f(x + 0.0, y + 0.0)
x0y1 = f(x + 0.0, y + CELL_SIZE)
x1y0 = f(x + CELL_SIZE, y + 0.0)
x1y1 = f(x + CELL_SIZE, y + CELL_SIZE)
# For each edge, identify where there is a sign change
changes = []
if (x0y0 > 0) != (x0y1 > 0):
changes.append([x + 0, y + adapt(x0y0, x0y1)])
if (x1y0 > 0) != (x1y1 > 0):
changes.append([x + CELL_SIZE, y + adapt(x1y0, x1y1)])
if (x0y0 > 0) != (x1y0 > 0):
changes.append([x + adapt(x0y0, x1y0), y + 0])
if (x0y1 > 0) != (x1y1 > 0):
changes.append([x + adapt(x0y1, x1y1), y + CELL_SIZE])
if len(changes) <= 1:
return None
# For each sign change location v[i], we find the normal n[i].
normals = []
for v in changes:
n = f_normal(v[0], v[1])
normals.append([n.x, n.y])
v = solve_qef_2d(x, y, changes, normals)
return v
def dual_contour_2d(f, f_normal, xmin=XMIN, xmax=XMAX, ymin=YMIN, ymax=YMAX):
"""Iterates over a cells of size one between the specified range, and evaluates f and f_normal to produce
a boundary by Dual Contouring. Returns an unordered list of Edge objects."""
# For each cell, find the the best vertex for fitting f
verts = {}
for ix, x in enumerate(frange(xmin, xmax, CELL_SIZE)):
for iy, y in enumerate(frange(ymin, ymax, CELL_SIZE)):
verts[ix, iy] = dual_contour_2d_find_best_vertex(f, f_normal, x, y)
# For each cell edge, emit an edge between the center of the adjacent cells if it is a sign changing edge
edges = []
# Do all the vertical sign changes
for ix, x in enumerate(frange(xmin, xmax, CELL_SIZE)):
if ix == 0:
continue
for iy, y in enumerate(frange(ymin, ymax, CELL_SIZE)):
y0 = y
y1 = y+CELL_SIZE
y0_solid = f(x, y0) > 0
y1_solid = f(x, y1) > 0
if y0_solid != y1_solid:
edges.append(Edge(verts[ix - 1, iy], verts[ix, iy]).swap(y0_solid))
# Do all the horizontal sign changes
for iy, y in enumerate(frange(ymin, ymax, CELL_SIZE)):
if iy == 0:
continue
for ix, x in enumerate(frange(xmin, xmax, CELL_SIZE)):
x0 = x
x1 = x+CELL_SIZE
x0_solid = f(x0, y) > 0
x1_solid = f(x1, y) > 0
if x0_solid != x1_solid:
edges.append(Edge(verts[ix, iy-1], verts[ix, iy]).swap(x0_solid))
return edges
def circle_function(x, y):
return 2.5 - math.sqrt(x*x + y*y)
def circle_normal(x, y):
l = math.sqrt(x*x + y*y)
return V2(-x / l, -y / l)
def square_function(x, y):
return 2.5 - max(abs(x), abs(y))
def square_normal(x, y):
if abs(x) > abs(y):
return V2(-math.copysign(x, 1), 0)
else:
return V2(0, -math.copysign(y, 1))
def normal_from_function(f, d=0.01):
"""Given a sufficiently smooth 2d function, f, returns a function approximating of the gradient of f.
d controls the scale, smaller values are a more accurate approximation."""
def norm(x, y):
return V2(
(f(x + d, y) - f(x - d, y)) / 2 / d,
(f(x, y + d) - f(x, y - d)) / 2 / d,
).normalize()
return norm
def t_shape_function(x, y):
if (x, y) in ((0, 0), (0, 1), (0, -1), (1, 0)):
return 1
return -1
def intersect_function(x, y):
y -= 0.3
x -= 0.5
x = abs(x)
#x += x*x / 1000
return min(x - y, x + y)
__all__ = ["dual_contour_2d"]
if __name__ == "__main__":
edges = dual_contour_2d(circle_function, circle_normal)
with open("example.svg", "w") as file:
make_svg(file, edges, circle_function)