forked from BorisTheBrave/mc-dc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
qef.py
245 lines (198 loc) · 10.1 KB
/
qef.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import numpy
import numpy.linalg
from utils_2d import V2
from utils_3d import V3
import settings
class QEF:
"""Represents and solves the quadratic error function"""
def __init__(self, A, b, fixed_values):
self.A = A
self.b = b
self.fixed_values = fixed_values
def evaluate(self, x):
"""Evaluates the function at a given point.
This is what the solve method is trying to minimize.
NB: Doesn't work with fixed axes."""
x = numpy.array(x)
return numpy.linalg.norm(numpy.matmul(self.A, x) - self.b)
def eval_with_pos(self, x):
"""Evaluates the QEF at a position, returning the same format solve does."""
return self.evaluate(x), x
@staticmethod
def make_2d(positions, normals):
"""Returns a QEF that measures the the error from a bunch of normals, each emanating from given positions"""
A = numpy.array(normals)
b = [v[0] * n[0] + v[1] * n[1] for v, n in zip(positions, normals)]
fixed_values = [None] * A.shape[1]
return QEF(A, b, fixed_values)
@staticmethod
def make_3d(positions, normals):
"""Returns a QEF that measures the the error from a bunch of normals, each emanating from given positions"""
A = numpy.array(normals)
b = [v[0] * n[0] + v[1] * n[1] + v[2] * n[2] for v, n in zip(positions, normals)]
fixed_values = [None] * A.shape[1]
return QEF(A, b, fixed_values)
def fix_axis(self, axis, value):
"""Returns a new QEF that gives the same values as the old one, only with the position along the given axis
constrained to be value."""
# Pre-evaluate the fixed axis, adjusting b
b = self.b[:] - self.A[:, axis] * value
# Remove that axis from a
A = numpy.delete(self.A, axis, 1)
fixed_values = self.fixed_values[:]
fixed_values[axis] = value
return QEF(A, b, fixed_values)
def solve(self):
"""Finds the point that minimizes the error of this QEF,
and returns a tuple of the error squared and the point itself"""
result, residual, rank, s = numpy.linalg.lstsq(self.A, self.b, rcond=None)
if len(residual) == 0:
residual = self.evaluate(result)
else:
residual = residual[0]
# Result only contains the solution for the unfixed axis,
# we need to add back all the ones we previously fixed.
position = []
i = 0
for value in self.fixed_values:
if value is None:
position.append(result[i])
i += 1
else:
position.append(value)
return residual, position
def solve_qef_2d(x, y, positions, normals):
# The error term we are trying to minimize is sum( dot(x-v[i], n[i]) ^ 2)
# This should be minimized over the unit square with top left point (x, y)
# In other words, minimize || A * x - b || ^2 where A and b are a matrix and vector
# derived from v and n
# The heavy lifting is done by the QEF class, but this function includes some important
# tricks to cope with edge cases
# This is demonstration code and isn't optimized, there are many good C++ implementations
# out there if you need speed.
CELL_SIZE = settings.CELL_SIZE
if settings.BIAS:
# Add extra normals that add extra error the further we go
# from the cell, this encourages the final result to be
# inside the cell
# These normals are shorter than the input normals
# as that makes the bias weaker, we want them to only
# really be important when the input is ambiguous
# Take a simple average of positions as the point we will
# pull towards.
mass_point = numpy.mean(positions, axis=0)
normals.append([settings.BIAS_STRENGTH, 0])
positions.append(mass_point)
normals.append([0, settings.BIAS_STRENGTH])
positions.append(mass_point)
qef = QEF.make_2d(positions, normals)
residual, v = qef.solve()
if settings.BOUNDARY:
def inside(r):
return x <= r[1][0] <= x + CELL_SIZE and y <= r[1][1] <= y + CELL_SIZE
# It's entirely possible that the best solution to the qef is not actually
# inside the cell.
if not inside((residual, v)):
# If so, we constrain the the qef to the horizontal and vertical
# lines bordering the cell, and find the best point of those
r1 = qef.fix_axis(0, x + 0).solve()
r2 = qef.fix_axis(0, x + CELL_SIZE).solve()
r3 = qef.fix_axis(1, y + 0).solve()
r4 = qef.fix_axis(1, y + CELL_SIZE).solve()
rs = list(filter(inside, [r1, r2, r3, r4]))
if len(rs) == 0:
# It's still possible that those lines (which are infinite)
# cause solutions outside the box. So finally, we evaluate which corner
# of the cell looks best
r1 = qef.eval_with_pos((x + 0, y + 0))
r2 = qef.eval_with_pos((x + 0, y + CELL_SIZE))
r3 = qef.eval_with_pos((x + CELL_SIZE, y + 0))
r4 = qef.eval_with_pos((x + CELL_SIZE, y + CELL_SIZE))
rs = list(filter(inside, [r1, r2, r3, r4]))
# Pick the best of the available options
residual, v = min(rs)
if settings.CLIP:
# Crudely force v to be inside the cell
v[0] = numpy.clip(v[0], x, x + CELL_SIZE)
v[1] = numpy.clip(v[1], y, y + CELL_SIZE)
return V2(v[0], v[1])
def solve_qef_3d(x, y, z, positions, normals):
# The error term we are trying to minimize is sum( dot(x-v[i], n[i]) ^ 2)
# This should be minimized over the unit square with top left point (x, y)
# In other words, minimize || A * x - b || ^2 where A and b are a matrix and vector
# derived from v and n
# The heavy lifting is done by the QEF class, but this function includes some important
# tricks to cope with edge cases
# This is demonstration code and isn't optimized, there are many good C++ implementations
# out there if you need speed.
CELL_SIZE = settings.CELL_SIZE
if settings.BIAS:
# Add extra normals that add extra error the further we go
# from the cell, this encourages the final result to be
# inside the cell
# These normals are shorter than the input normals
# as that makes the bias weaker, we want them to only
# really be important when the input is ambiguous
# Take a simple average of positions as the point we will
# pull towards.
mass_point = numpy.mean(positions, axis=0)
normals.append([settings.BIAS_STRENGTH, 0, 0])
positions.append(mass_point)
normals.append([0, settings.BIAS_STRENGTH, 0])
positions.append(mass_point)
normals.append([0, 0, settings.BIAS_STRENGTH])
positions.append(mass_point)
qef = QEF.make_3d(positions, normals)
residual, v = qef.solve()
if settings.BOUNDARY:
def inside(r):
return x <= r[1][0] <= x + CELL_SIZE and y <= r[1][1] <= y + CELL_SIZE and z <= r[1][2] <= z + CELL_SIZE
# It's entirely possible that the best solution to the qef is not actually
# inside the cell.
if not inside((residual, v)):
# If so, we constrain the the qef to the 6
# planes bordering the cell, and find the best point of those
r1 = qef.fix_axis(0, x + 0).solve()
r2 = qef.fix_axis(0, x + CELL_SIZE).solve()
r3 = qef.fix_axis(1, y + 0).solve()
r4 = qef.fix_axis(1, y + CELL_SIZE).solve()
r5 = qef.fix_axis(2, z + 0).solve()
r6 = qef.fix_axis(2, z + CELL_SIZE).solve()
rs = list(filter(inside, [r1, r2, r3, r4, r5, r6]))
if len(rs) == 0:
# It's still possible that those planes (which are infinite)
# cause solutions outside the box.
# So now try the 12 lines bordering the cell
r1 = qef.fix_axis(1, y + 0).fix_axis(0, x + 0).solve()
r2 = qef.fix_axis(1, y + CELL_SIZE).fix_axis(0, x + 0).solve()
r3 = qef.fix_axis(1, y + 0).fix_axis(0, x + CELL_SIZE).solve()
r4 = qef.fix_axis(1, y + CELL_SIZE).fix_axis(0, x + CELL_SIZE).solve()
r5 = qef.fix_axis(2, z + 0).fix_axis(0, x + 0).solve()
r6 = qef.fix_axis(2, z + CELL_SIZE).fix_axis(0, x + 0).solve()
r7 = qef.fix_axis(2, z + 0).fix_axis(0, x + CELL_SIZE).solve()
r8 = qef.fix_axis(2, z + CELL_SIZE).fix_axis(0, x + CELL_SIZE).solve()
r9 = qef.fix_axis(2, z + 0).fix_axis(1, y + 0).solve()
r10 = qef.fix_axis(2, z + CELL_SIZE).fix_axis(1, y + 0).solve()
r11 = qef.fix_axis(2, z + 0).fix_axis(1, y + CELL_SIZE).solve()
r12 = qef.fix_axis(2, z + CELL_SIZE).fix_axis(1, y + CELL_SIZE).solve()
rs = list(filter(inside, [r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12]))
if len(rs) == 0:
# So finally, we evaluate which corner
# of the cell looks best
r1 = qef.eval_with_pos((x + 0, y + 0, z + 0))
r2 = qef.eval_with_pos((x + 0, y + 0, z + CELL_SIZE))
r3 = qef.eval_with_pos((x + 0, y + CELL_SIZE, z + 0))
r4 = qef.eval_with_pos((x + 0, y + CELL_SIZE, z + CELL_SIZE))
r5 = qef.eval_with_pos((x + CELL_SIZE, y + 0, z + 0))
r6 = qef.eval_with_pos((x + CELL_SIZE, y + 0, z + CELL_SIZE))
r7 = qef.eval_with_pos((x + CELL_SIZE, y + CELL_SIZE, z + 0))
r8 = qef.eval_with_pos((x + CELL_SIZE, y + CELL_SIZE, z + CELL_SIZE))
rs = list(filter(inside, [r1, r2, r3, r4, r5, r6, r7, r8]))
# Pick the best of the available options
residual, v = min(rs)
if settings.CLIP:
# Crudely force v to be inside the cell
v[0] = numpy.clip(v[0], x, x + CELL_SIZE)
v[1] = numpy.clip(v[1], y, y + CELL_SIZE)
v[2] = numpy.clip(v[2], z, z + CELL_SIZE)
return V3(v[0], v[1], v[2])