forked from syllog1sm/redshift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfabfile.py
551 lines (488 loc) · 20.4 KB
/
fabfile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
from fabric.api import local, run, lcd, cd, env
from fabric.operations import get, put
from fabric.contrib.files import exists
from pathlib import Path
import time
import re
from math import sqrt
from os.path import join as pjoin
from os import listdir
from StringIO import StringIO
import scipy.stats
from itertools import combinations
env.use_ssh_config = True
from _paths import REMOTE_REPO, REMOTE_CONLL, REMOTE_MALT, REMOTE_STANFORD, REMOTE_PARSERS
from _paths import REMOTE_SWBD
from _paths import LOCAL_REPO, LOCAL_MALT, LOCAL_STANFORD, LOCAL_PARSERS
from _paths import HOSTS, GATEWAY
env.hosts = HOSTS
env.gateway = GATEWAY
def recompile(runner=local):
clean()
make()
def clean():
with lcd(str(LOCAL_REPO)):
local('python setup.py clean --all')
def make():
with lcd(str(LOCAL_REPO)):
local('python setup.py build_ext --inplace')
def qstat():
run("qstat -na | grep mhonn")
def deploy():
clean()
make()
with cd(str(REMOTE_REPO)):
run('git pull')
def test1k(model="baseline", dbg=False):
with lcd(str(LOCAL_REPO)):
local(_train('~/work_data/stanford/1k_train.txt', '~/work_data/parsers/tmp',
debug=dbg))
local(_parse('~/work_data/parsers/tmp', '~/work_data/stanford/dev_auto_pos.parse',
'/tmp/parse', gold=True))
def beam(name, k=8, n=1, size=0, train_alg="static", feats="zhang", tb='wsj'):
size = int(size)
k = int(k)
n = int(n)
use_edit = False
if tb == 'wsj':
data = str(REMOTE_STANFORD)
train_name = 'train.txt'
eval_pos = 'devi.txt'
eval_parse = 'devr.txt'
elif tb == 'swbd':
data = str(REMOTE_SWBD)
train_name = 'sw.mwe.train'
eval_pos = 'sw.mwe.devi'
eval_parse = 'sw.mwe.devr'
if train_alg != 'static':
use_edit = True
exp_dir = str(REMOTE_PARSERS)
train_n(n, name, exp_dir,
data, k=k, i=15, feat_str=feats,
n_sents=size, train_name=train_name, train_alg=train_alg,
use_edit=use_edit, dev_names=(eval_pos, eval_parse))
def conll_table(name):
langs = ['arabic', 'basque', 'catalan', 'chinese', 'czech', 'english',
'greek', 'hungarian', 'italian', 'turkish']
systems = ['bl', 'exp']
for lang in langs:
bl_accs = []
exp_accs = []
for system, accs in zip(systems, ([bl_accs, exp_accs])):
for i in range(20):
uas_loc = pjoin(str(REMOTE_PARSERS), 'conll', lang, system,
str(i), 'dev', 'acc')
try:
text = run('cat %s' % uas_loc, quiet=True).stdout
accs.append(_get_acc(text, score='U'))
except:
continue
if bl_accs:
bl_n, bl_acc, stdev = _get_stdev(bl_accs)
if exp_accs:
exp_n, exp_acc, stdev = _get_stdev(exp_accs)
if bl_n == exp_n:
z, p = scipy.stats.wilcoxon(bl_accs, exp_accs)
else:
p = 1.0
print lang, fmt_pc(bl_acc), fmt_pc(exp_acc), '%.4f' % p
def fmt_pc(pc):
if pc < 1:
pc *= 100
return '%.2f' % pc
def conll(name, lang, n=20, debug=False):
"""Run the 20 seeds for the baseline and experiment conditions for a conll lang"""
data = str(REMOTE_CONLL)
repo = str(REMOTE_REPO)
eval_pos = '%s.test.pos' % lang
eval_parse = '%s.test.malt' % lang
train_name = '%s.train.proj.malt' % lang
n = int(n)
if debug == True: n = 2
for condition, arg_str in [('bl', ''), ('exp', '-r -d')]:
for i in range(n):
exp_name = '%s_%s_%s_%d' % (name, lang, condition, i)
model = pjoin(str(REMOTE_PARSERS), name, lang, condition, str(i))
run("mkdir -p %s" % model)
train_str = _train(pjoin(data, train_name), model, k=0, i=15,
add_feats=False, train_alg='online', seed=i, label="conll",
args=arg_str)
parse_str = _parse(model, pjoin(data, eval_pos), pjoin(model, 'dev'), k=0)
eval_str = _evaluate(pjoin(model, 'dev', 'parses'), pjoin(data, eval_parse))
grep_str = "grep 'U:' %s >> %s" % (pjoin(model, 'dev', 'acc'),
pjoin(model, 'dev', 'uas'))
script = _pbsify(repo, (train_str, parse_str, eval_str, grep_str))
if debug:
print script
continue
script_loc = pjoin(repo, 'pbs', exp_name)
with cd(repo):
put(StringIO(script), script_loc)
run('qsub -N %s_bl %s' % (exp_name, script_loc))
def ngram_add1(name, k=8, n=1, size=10000):
import redshift.features
n = int(n)
k = int(k)
size = int(size)
data = str(REMOTE_MALT)
repo = str(REMOTE_REPO)
train_name = '0.train'
eval_pos = '0.testi'
eval_parse = '0.test'
arg_str = 'full'
train_n(n, 'base', pjoin(str(REMOTE_PARSERS), name), data, k=k, i=15,
feat_str="full", train_alg='max', label="NONE", n_sents=size,
ngrams=0, train_name=train_name)
tokens = 'S0,N0,N1,N2,N0l,N0l2,S0h,S0h2,S0r,S0r2,S0l,S0l2'.split(',')
ngram_names = ['%s_%s' % (p) for p in combinations(tokens, 2)]
ngram_names.extend('%s_%s_%s' % (p) for p in combinations(tokens, 3))
kernel_tokens = redshift.features.get_kernel_tokens()
ngrams = list(combinations(kernel_tokens, 2))
ngrams.extend(combinations(kernel_tokens, 3))
n_ngrams = len(ngrams)
n_models = n
for ngram_id, ngram in list(sorted(enumerate(ngrams))):
ngram_name = ngram_names[ngram_id]
train_n(n, '%d_%s' % (ngram_id, ngram_name), pjoin(str(REMOTE_PARSERS), name),
data, k=k, i=15, feat_str="full", train_alg='max', label="NONE",
n_sents=size, ngrams='_'.join([str(i) for i in ngram]),
train_name=train_name, dev_names=(eval_pos, eval_parse))
n_models += n
# Sleep 5 mins after submitting 50 jobs
if n_models > 100:
time.sleep(350)
n_models = 0
def combine_ngrams(name, k=8, n=5, size=10000):
def make_ngram_str(ngrams):
strings = ['_'.join([str(name_to_idx[t]) for t in ngram.split('_')]) for ngram in ngrams]
return ','.join(strings)
n = int(n)
k = int(k)
size = int(size)
data = str(REMOTE_MALT)
repo = str(REMOTE_REPO)
train_name = '0.train'
eval_pos = '0.testi'
eval_parse = '0.test'
import redshift.features
kernel_tokens = redshift.features.get_kernel_tokens()
token_names = 'S0 N0 N1 N2 N0l N0l2 S0h S0h2 S0r S0r2 S0l S0l2'.split()
name_to_idx = dict((tok, idx) for idx, tok in enumerate(token_names))
ngrams = ['S0_S0r_S0l', 'S0_S0h_S0r', 'S0_N1_S0r', 'S0_N0l_S0h', 'S0_N0l_S0r',
'S0_N0_S0r2', 'S0_N0l2_S0r', 'S0_S0h_S0l', 'S0_N0l2_S0h', 'S0_N0_S0h',
'S0_S0r_S0l2', 'S0_N0_S0r', 'S0_S0r_S0r2', 'S0_N0_N0l2', 'S0_N1_N0l',
'S0_N0_N0l', 'S0_S0h_S0r2', 'S0_N1_S0h', 'N0_N0l_S0r2', 'S0_N1_S0r2',
'N0_N0l_S0r', 'S0_N1_S0l', 'S0_S0h_S0l2', 'S0_N0l_S0r2']
base_set = []
n_added = 0
ngram_str = make_ngram_str(base_set)
exp_dir = pjoin(str(REMOTE_PARSERS), name, str(n_added))
n_finished = count_finished(exp_dir)
if n_finished < n:
train_n(n, str(n_added), pjoin(str(REMOTE_PARSERS), name),
data, k=k, i=15, feat_str="full", train_alg='max', label="NONE",
n_sents=size, ngrams=0, train_name=train_name,
dev_names=(eval_pos, eval_parse))
n_finished = 0
while n_finished < n:
time.sleep(60)
n_finished = count_finished(exp_dir)
base_accs = get_accs(exp_dir)
base_avg = sum(base_accs) / len(base_accs)
print "Base: ", base_avg
rejected = []
while True:
next_ngram = ngrams.pop(0)
n_added += 1
print "Testing", next_ngram
ngram_str = make_ngram_str(base_set + [next_ngram])
exp_dir = pjoin(str(REMOTE_PARSERS), name, str(n_added))
n_finished = count_finished(exp_dir)
if n_finished < n:
train_n(n, str(n_added), pjoin(str(REMOTE_PARSERS), name),
data, k=k, i=15, feat_str="full", train_alg='max',
label="NONE", n_sents=size, ngrams=ngram_str, train_name=train_name,
dev_names=(eval_pos, eval_parse))
n_finished = 0
while n_finished < n:
time.sleep(60)
n_finished = count_finished(exp_dir)
exp_accs = get_accs(exp_dir)
exp_avg = sum(exp_accs) / len(exp_accs)
if n >= 20:
_, p = scipy.stats.wilcoxon(exp_accs, base_accs)
else:
p = 0.0
if exp_avg > base_avg and p < 0.1:
print "Accepted!", next_ngram, base_avg, exp_avg, p
base_set.append(next_ngram)
base_avg = exp_avg
base_accs = exp_accs
else:
print "Rejected!", next_ngram, base_avg, exp_avg, p
rejected.append(next_ngram)
print "Current set: ", ' '.join(base_set)
print "Rejected:", ' '.join(rejected)
def get_best_trigrams(all_trigrams, n=25):
best = [2, 199, 158, 61, 66, 5, 150, 1, 88, 154, 85, 25, 53, 10, 3, 60, 73,
175, 114, 4, 6, 148, 205, 197, 0, 71, 127, 200, 142, 84, 43, 89, 45,
95, 419, 33, 110, 182, 20, 24, 159, 51, 106, 26, 8, 178, 151, 12, 166,
192, 7, 209, 190, 147, 13, 194, 50, 129, 174, 186, 28, 116, 193, 179,
262, 23, 44, 172, 133, 191, 562, 38, 124, 195, 123, 72, 202, 187, 101,
92, 104, 115, 596, 29, 99, 132, 169, 42, 206, 592, 67, 323, 69, 9, 74,
14, 136, 64, 561, 161, 19, 77, 171, 300, 204, 310, 121, 15, 201, 235,
657, 70, 198, 22, 68, 48, 153, 54, 286, 83, 162, 100, 506, 98, 80, 433,
420, 63, 613, 149, 90, 139, 31, 91, 86, 203, 248, 173, 130, 165, 346,
157, 616, 18, 145, 451, 410, 75, 55, 603, 156, 52, 622, 210, 332, 120]
def tritable(name):
#exp_dir = REMOTE_PARSERS.join(name)
exp_dir = Path('/data1/mhonniba/').join(name)
results = []
with cd(str(exp_dir)):
ngrams = run("ls %s" % exp_dir, quiet=True).split()
for ngram in sorted(ngrams):
base_dir = exp_dir.join(ngram).join('base')
tri_dir = exp_dir.join(ngram).join('exp')
base_accs = get_accs(str(base_dir))
tri_accs = get_accs(str(tri_dir))
if not base_accs or not tri_accs:
continue
if len(base_accs) != len(tri_accs):
continue
#z, p = scipy.stats.wilcoxon(base_accs, tri_accs)
p = 1.0
delta = (sum(tri_accs) / len(tri_accs)) - (sum(base_accs) / len(base_accs))
results.append((delta, ngram, p))
results.sort(reverse=True)
good_trigrams = []
for delta, ngram, p in results:
ngram = ngram.replace('s0le', 'n0le')
pieces = ngram.split('_')
print r'%s & %s & %s & %.1f \\' % (pieces[1], pieces[2], pieces[3], delta)
if delta > 0.1:
good_trigrams.append(int(ngram.split('_')[0]))
print good_trigrams
print len(good_trigrams)
def bitable(name):
exp_dir = REMOTE_PARSERS.join(name)
base_accs = get_accs(str(exp_dir.join('0_S0_N0')))
base_acc = sum(base_accs) / len(base_accs)
print "Base:", len(base_accs), sum(base_accs) / len(base_accs)
results = []
with cd(str(exp_dir)):
ngrams = run("ls %s" % exp_dir, quiet=True).split()
for ngram in sorted(ngrams):
if ngram == 'base' or ngram == '0_S0_N0':
continue
accs = get_accs(str(exp_dir.join(ngram)))
print ngram, len(accs)
if not accs:
continue
_, avg, stdev = _get_stdev(accs)
z, p = scipy.stats.wilcoxon(accs, base_accs)
parts = ngram.split('_')
if ngram.startswith('base'):
base_acc = avg
else:
results.append((avg, ngram, stdev, p))
good_ngrams = []
results.sort()
results.reverse()
for acc, ngram, stdev, p in results:
ngram = '_'.join(ngram.split('_')[1:])
if acc > base_acc and p < 0.01:
print r'%s & %.3f & %.3f \\' % (ngram, acc - base_acc, p)
good_ngrams.append(ngram)
print good_ngrams
print len(good_ngrams)
def vocab_thresholds(name, k=8, n=1, size=10000):
base_dir = REMOTE_PARSERS.join(name)
n = int(n)
k = int(k)
size = int(size)
data = str(REMOTE_STANFORD)
repo = str(REMOTE_REPO)
train_name = 'train.txt'
eval_pos = 'devi.txt'
eval_parse = 'devr.txt'
thresholds = [75]
ngram_sizes = [60, 90, 120]
for n_ngrams in ngram_sizes:
if n_ngrams == 0:
feat_name = 'zhang'
else:
feat_name = 'full'
exp_dir = str(base_dir.join('%d_ngrams' % n_ngrams))
#if n_ngrams < 100:
# train_n(n, 'unpruned', exp_dir, data, k=k, i=15, t=0, f=0,
# train_alg="max", label="Stanford", n_sents=size, feat_str=feat_name)
for t in thresholds:
thresh = 'thresh%d' % t
train_n(n, thresh, exp_dir, data, k=k, i=15, t=t, f=100,
train_alg='max', label="Stanford", n_sents=size,
feat_str=feat_name, ngrams=n_ngrams)
def vocab_table(name):
exp_dir = REMOTE_PARSERS.join(name)
with cd(str(exp_dir)):
conditions = run("ls %s" % exp_dir, quiet=True).split()
for condition in sorted(conditions):
accs = get_accs(str(exp_dir.join(condition)))
print condition, len(accs), sum(accs) / len(accs)
# 119_s0_s0r2_s0l2
def train_n(n, name, exp_dir, data, k=1, feat_str="zhang", i=15, upd='max',
train_alg="online", n_sents=0, static=False, use_edit=False,
ngrams=0, t=0, f=0, train_name='train.txt', dev_names=('devi.txt', 'devr.txt')):
exp_dir = str(exp_dir)
repo = str(REMOTE_REPO)
for seed in range(n):
exp_name = '%s_%d' % (name, seed)
model = pjoin(exp_dir, name, str(seed))
run("mkdir -p %s" % model, quiet=True)
train_str = _train(pjoin(data, train_name), model, k=k, i=15,
feat_str=feat_str, train_alg=train_alg, seed=seed,
n_sents=n_sents, ngrams=ngrams, use_edit=use_edit,
vocab_thresh=t, feat_thresh=f)
parse_str = _parse(model, pjoin(data, dev_names[0]), pjoin(model, 'dev'))
eval_str = _evaluate(pjoin(model, 'dev', 'parses'), pjoin(data, dev_names[1]))
grep_str = "grep 'U:' %s >> %s" % (pjoin(model, 'dev', 'acc'),
pjoin(model, 'dev', 'uas'))
# Save disk space by removing models
del_str = "rm %s %s" % (pjoin(model, "model"), pjoin(model, "words"))
script = _pbsify(repo, (train_str, parse_str, eval_str, grep_str, del_str))
script_loc = pjoin(repo, 'pbs', exp_name)
with cd(repo):
put(StringIO(script), script_loc)
err_loc = pjoin(model, 'stderr')
out_loc = pjoin(model, 'stdout')
run('qsub -N %s %s -e %s -o %s' % (exp_name, script_loc, err_loc, out_loc), quiet=True)
def count_finished(exp_dir):
with cd(exp_dir):
samples = [s for s in run("ls %s/*/" % exp_dir, quiet=True).split()
if s.endswith('stdout')]
return len(samples)
def get_accs(exp_dir, eval_name='dev'):
results = []
with cd(exp_dir):
results = [float(s.split()[1]) for s in
run("grep 'U:' %s/*/dev/acc" % exp_dir, quiet=True).split('\n')
if s.strip()]
return results
def _train(data, model, debug=False, k=1, feat_str='zhang', i=15,
train_alg="static", seed=0, args='',
n_sents=0, ngrams=0, vocab_thresh=0, feat_thresh=10,
use_edit=False):
use_edit = '-e' if use_edit else ''
template = './scripts/train.py -i {i} -a {alg} -k {k} -x {feat_str} {data} {model} -s {seed} -n {n_sents} -g {ngrams} -t {vocab_thresh} -f {feat_thresh} {use_edit} {args}'
if debug:
template += ' -debug'
return template.format(data=data, model=model, k=k, feat_str=feat_str, i=i,
vocab_thresh=vocab_thresh, feat_thresh=feat_thresh,
alg=train_alg, use_edit=use_edit, seed=seed,
args=args, n_sents=n_sents, ngrams=ngrams)
def _parse(model, data, out, gold=False):
template = './scripts/parse.py {model} {data} {out} '
if gold:
template += '-g'
return template.format(model=model, data=data, out=out)
def _evaluate(test, gold):
return './scripts/evaluate.py %s %s > %s' % (test, gold, test.replace('parses', 'acc'))
def _pbsify(repo, command_strs, size=5):
header = """#! /bin/bash
#PBS -l walltime=20:00:00,mem=2gb,nodes=1:ppn={n_procs}
source /home/mhonniba/ev/bin/activate
export PYTHONPATH={repo}:{repo}/redshift:{repo}/svm
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib64:/lib64:/usr/lib64/:/usr/lib64/atlas:{repo}/redshift/svm/lib/
cd {repo}"""
return header.format(n_procs=size, repo=repo) + '\n' + '\n'.join(command_strs)
uas_re = re.compile(r'U: (\d\d.\d+)')
las_re = re.compile(r'L: (\d\d.\d+)')
# TODO: Hook up LAS arg
def _get_acc(text, score='U'):
if score == 'U':
return float(uas_re.search(text).groups()[0])
else:
return float(las_re.search(text).groups()[0])
def _get_stdev(scores):
n = len(scores)
mean = sum(scores) / n
var = sum((s - mean)**2 for s in scores)/n
return n, mean, sqrt(var)
def _get_repair_str(reattach, lower, invert):
repair_str = []
if reattach:
repair_str.append('-r -o')
if lower:
repair_str.append('-w')
if invert:
repair_str.append('-v')
return ' '.join(repair_str)
def _get_paths(here):
if here == True:
return LOCAL_REPO, LOCAL_STANFORD, LOCAL_PARSERS
else:
return REMOTE_REPO, REMOTE_STANFORD, REMOTE_PARSERS
def _get_train_name(data_loc, size):
if size == 'full':
train_name = 'train.txt'
elif size == '1k':
train_name = '1k_train.txt'
elif size == '5k':
train_name = '5k_train.txt'
elif size == '10k':
train_name = '10k_train.txt'
else:
raise StandardError(size)
return data_loc.join(train_name)
def run_static(name, size='full', here=True, feats='all', labels="MALT", thresh=5, reattach=False,
lower=False):
train_name = _get_train_name(size)
repair_str = ''
if reattach:
repair_str += '-r '
if lower:
repair_str += '-m'
if feats == 'all':
feats_flag = ''
elif feats == 'zhang':
feats_flag = '-x'
if here is True:
data_loc = Path(LOCAL_STANFORD)
#if labels == 'Stanford':
# data_loc = Path(LOCAL_STANFORD)
#else:
# data_loc = Path(LOCAL_CONLL)
parser_loc = Path(LOCAL_PARSERS).join(name)
runner = local
cder = lcd
repo = LOCAL_REPO
else:
if labels == 'Stanford':
data_loc = Path(REMOTE_STANFORD)
else:
data_loc = Path(REMOTE_CONLL)
parser_loc = Path(REMOTE_PARSERS).join(name)
runner = run
cder = cd
repo = REMOTE_REPO
train_loc = data_loc.join(train_name)
with cder(repo):
#runner('make -C redshift clean')
runner('make -C redshift')
if here is not True:
arg_str = 'PARSER_DIR=%s,DATA_DIR=%s,FEATS="%s,LABELS=%s,THRESH=%s,REPAIRS=%s"' % (parser_loc, data_loc, feats_flag, labels, thresh, repair_str)
job_name = 'redshift_%s' % name
err_loc = parser_loc.join('err')
out_loc = parser_loc.join('log')
run('qsub -e %s -o %s -v %s -N %s pbs/redshift.pbs' % (err_loc, out_loc, arg_str, job_name))
print "Waiting 2m for job to initialise"
time.sleep(120)
run('qstat -na | grep mhonniba')
if err_loc.exists():
print err_loc.open()
else:
dev_loc = data_loc.join('devr.txt')
in_loc = data_loc.join('dev_auto_pos.parse')
out_dir = parser_loc.join('parsed_dev')
runner('./scripts/train.py %s -f %d -l %s %s %s %s' % (repair_str, thresh, labels, feats_flag, train_loc, parser_loc))
runner('./scripts/parse.py -g %s %s %s' % (parser_loc, in_loc, out_dir))
runner('./scripts/evaluate.py %s %s' % (out_dir.join('parses'), dev_loc))