-
Notifications
You must be signed in to change notification settings - Fork 1k
/
ecmult_impl.h
1135 lines (1015 loc) · 41.5 KB
/
ecmult_impl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*****************************************************************************
* Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra, Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php. *
*****************************************************************************/
#ifndef SECP256K1_ECMULT_IMPL_H
#define SECP256K1_ECMULT_IMPL_H
#include <string.h>
#include <stdint.h>
#include "util.h"
#include "group.h"
#include "scalar.h"
#include "ecmult.h"
#if defined(EXHAUSTIVE_TEST_ORDER)
/* We need to lower these values for exhaustive tests because
* the tables cannot have infinities in them (this breaks the
* affine-isomorphism stuff which tracks z-ratios) */
# if EXHAUSTIVE_TEST_ORDER > 128
# define WINDOW_A 5
# define WINDOW_G 8
# elif EXHAUSTIVE_TEST_ORDER > 8
# define WINDOW_A 4
# define WINDOW_G 4
# else
# define WINDOW_A 2
# define WINDOW_G 2
# endif
#else
/* optimal for 128-bit and 256-bit exponents. */
#define WINDOW_A 5
/** larger numbers may result in slightly better performance, at the cost of
exponentially larger precomputed tables. */
#ifdef USE_ENDOMORPHISM
/** Two tables for window size 15: 1.375 MiB. */
#define WINDOW_G 15
#else
/** One table for window size 16: 1.375 MiB. */
#define WINDOW_G 16
#endif
#endif
#ifdef USE_ENDOMORPHISM
#define WNAF_BITS 128
#else
#define WNAF_BITS 256
#endif
#define WNAF_SIZE_BITS(bits, w) (((bits) + (w) - 1) / (w))
#define WNAF_SIZE(w) WNAF_SIZE_BITS(WNAF_BITS, w)
/** The number of entries a table with precomputed multiples needs to have. */
#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2))
/* The number of objects allocated on the scratch space for ecmult_multi algorithms */
#define PIPPENGER_SCRATCH_OBJECTS 6
#define STRAUSS_SCRATCH_OBJECTS 6
#define PIPPENGER_MAX_BUCKET_WINDOW 12
/* Minimum number of points for which pippenger_wnaf is faster than strauss wnaf */
#ifdef USE_ENDOMORPHISM
#define ECMULT_PIPPENGER_THRESHOLD 88
#else
#define ECMULT_PIPPENGER_THRESHOLD 160
#endif
#ifdef USE_ENDOMORPHISM
#define ECMULT_MAX_POINTS_PER_BATCH 5000000
#else
#define ECMULT_MAX_POINTS_PER_BATCH 10000000
#endif
/** Fill a table 'prej' with precomputed odd multiples of a. Prej will contain
* the values [1*a,3*a,...,(2*n-1)*a], so it space for n values. zr[0] will
* contain prej[0].z / a.z. The other zr[i] values = prej[i].z / prej[i-1].z.
* Prej's Z values are undefined, except for the last value.
*/
static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej *prej, secp256k1_fe *zr, const secp256k1_gej *a) {
secp256k1_gej d;
secp256k1_ge a_ge, d_ge;
int i;
VERIFY_CHECK(!a->infinity);
secp256k1_gej_double_var(&d, a, NULL);
/*
* Perform the additions on an isomorphism where 'd' is affine: drop the z coordinate
* of 'd', and scale the 1P starting value's x/y coordinates without changing its z.
*/
d_ge.x = d.x;
d_ge.y = d.y;
d_ge.infinity = 0;
secp256k1_ge_set_gej_zinv(&a_ge, a, &d.z);
prej[0].x = a_ge.x;
prej[0].y = a_ge.y;
prej[0].z = a->z;
prej[0].infinity = 0;
zr[0] = d.z;
for (i = 1; i < n; i++) {
secp256k1_gej_add_ge_var(&prej[i], &prej[i-1], &d_ge, &zr[i]);
}
/*
* Each point in 'prej' has a z coordinate too small by a factor of 'd.z'. Only
* the final point's z coordinate is actually used though, so just update that.
*/
secp256k1_fe_mul(&prej[n-1].z, &prej[n-1].z, &d.z);
}
/** Fill a table 'pre' with precomputed odd multiples of a.
*
* There are two versions of this function:
* - secp256k1_ecmult_odd_multiples_table_globalz_windowa which brings its
* resulting point set to a single constant Z denominator, stores the X and Y
* coordinates as ge_storage points in pre, and stores the global Z in rz.
* It only operates on tables sized for WINDOW_A wnaf multiples.
* - secp256k1_ecmult_odd_multiples_table_storage_var, which converts its
* resulting point set to actually affine points, and stores those in pre.
* It operates on tables of any size, but uses heap-allocated temporaries.
*
* To compute a*P + b*G, we compute a table for P using the first function,
* and for G using the second (which requires an inverse, but it only needs to
* happen once).
*/
static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) {
secp256k1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)];
/* Compute the odd multiples in Jacobian form. */
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), prej, zr, a);
/* Bring them to the same Z denominator. */
secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr);
}
static void secp256k1_ecmult_odd_multiples_table_storage_var(const int n, secp256k1_ge_storage *pre, const secp256k1_gej *a) {
secp256k1_gej d;
secp256k1_ge d_ge, p_ge;
secp256k1_gej pj;
secp256k1_fe zi;
secp256k1_fe zr;
secp256k1_fe dx_over_dz_squared;
int i;
VERIFY_CHECK(!a->infinity);
secp256k1_gej_double_var(&d, a, NULL);
/* First, we perform all the additions in an isomorphic curve obtained by multiplying
* all `z` coordinates by 1/`d.z`. In these coordinates `d` is affine so we can use
* `secp256k1_gej_add_ge_var` to perform the additions. For each addition, we store
* the resulting y-coordinate and the z-ratio, since we only have enough memory to
* store two field elements. These are sufficient to efficiently undo the isomorphism
* and recompute all the `x`s.
*/
d_ge.x = d.x;
d_ge.y = d.y;
d_ge.infinity = 0;
secp256k1_ge_set_gej_zinv(&p_ge, a, &d.z);
pj.x = p_ge.x;
pj.y = p_ge.y;
pj.z = a->z;
pj.infinity = 0;
for (i = 0; i < (n - 1); i++) {
secp256k1_fe_normalize_var(&pj.y);
secp256k1_fe_to_storage(&pre[i].y, &pj.y);
secp256k1_gej_add_ge_var(&pj, &pj, &d_ge, &zr);
secp256k1_fe_normalize_var(&zr);
secp256k1_fe_to_storage(&pre[i].x, &zr);
}
/* Invert d.z in the same batch, preserving pj.z so we can extract 1/d.z */
secp256k1_fe_mul(&zi, &pj.z, &d.z);
secp256k1_fe_inv_var(&zi, &zi);
/* Directly set `pre[n - 1]` to `pj`, saving the inverted z-coordinate so
* that we can combine it with the saved z-ratios to compute the other zs
* without any more inversions. */
secp256k1_ge_set_gej_zinv(&p_ge, &pj, &zi);
secp256k1_ge_to_storage(&pre[n - 1], &p_ge);
/* Compute the actual x-coordinate of D, which will be needed below. */
secp256k1_fe_mul(&d.z, &zi, &pj.z); /* d.z = 1/d.z */
secp256k1_fe_sqr(&dx_over_dz_squared, &d.z);
secp256k1_fe_mul(&dx_over_dz_squared, &dx_over_dz_squared, &d.x);
/* Going into the second loop, we have set `pre[n-1]` to its final affine
* form, but still need to set `pre[i]` for `i` in 0 through `n-2`. We
* have `zi = (p.z * d.z)^-1`, where
*
* `p.z` is the z-coordinate of the point on the isomorphic curve
* which was ultimately assigned to `pre[n-1]`.
* `d.z` is the multiplier that must be applied to all z-coordinates
* to move from our isomorphic curve back to secp256k1; so the
* product `p.z * d.z` is the z-coordinate of the secp256k1
* point assigned to `pre[n-1]`.
*
* All subsequent inverse-z-coordinates can be obtained by multiplying this
* factor by successive z-ratios, which is much more efficient than directly
* computing each one.
*
* Importantly, these inverse-zs will be coordinates of points on secp256k1,
* while our other stored values come from computations on the isomorphic
* curve. So in the below loop, we will take care not to actually use `zi`
* or any derived values until we're back on secp256k1.
*/
i = n - 1;
while (i > 0) {
secp256k1_fe zi2, zi3;
const secp256k1_fe *rzr;
i--;
secp256k1_ge_from_storage(&p_ge, &pre[i]);
/* For each remaining point, we extract the z-ratio from the stored
* x-coordinate, compute its z^-1 from that, and compute the full
* point from that. */
rzr = &p_ge.x;
secp256k1_fe_mul(&zi, &zi, rzr);
secp256k1_fe_sqr(&zi2, &zi);
secp256k1_fe_mul(&zi3, &zi2, &zi);
/* To compute the actual x-coordinate, we use the stored z ratio and
* y-coordinate, which we obtained from `secp256k1_gej_add_ge_var`
* in the loop above, as well as the inverse of the square of its
* z-coordinate. We store the latter in the `zi2` variable, which is
* computed iteratively starting from the overall Z inverse then
* multiplying by each z-ratio in turn.
*
* Denoting the z-ratio as `rzr`, we observe that it is equal to `h`
* from the inside of the above `gej_add_ge_var` call. This satisfies
*
* rzr = d_x * z^2 - x * d_z^2
*
* where (`d_x`, `d_z`) are Jacobian coordinates of `D` and `(x, z)`
* are Jacobian coordinates of our desired point -- except both are on
* the isomorphic curve that we were using when we called `gej_add_ge_var`.
* To get back to secp256k1, we must multiply both `z`s by `d_z`, or
* equivalently divide both `x`s by `d_z^2`. Our equation then becomes
*
* rzr = d_x * z^2 / d_z^2 - x
*
* (The left-hand-side, being a ratio of z-coordinates, is unaffected
* by the isomorphism.)
*
* Rearranging to solve for `x`, we have
*
* x = d_x * z^2 / d_z^2 - rzr
*
* But what we actually want is the affine coordinate `X = x/z^2`,
* which will satisfy
*
* X = d_x / d_z^2 - rzr / z^2
* = dx_over_dz_squared - rzr * zi2
*/
secp256k1_fe_mul(&p_ge.x, rzr, &zi2);
secp256k1_fe_negate(&p_ge.x, &p_ge.x, 1);
secp256k1_fe_add(&p_ge.x, &dx_over_dz_squared);
/* y is stored_y/z^3, as we expect */
secp256k1_fe_mul(&p_ge.y, &p_ge.y, &zi3);
/* Store */
secp256k1_ge_to_storage(&pre[i], &p_ge);
}
}
/** The following two macro retrieves a particular odd multiple from a table
* of precomputed multiples. */
#define ECMULT_TABLE_GET_GE(r,pre,n,w) do { \
VERIFY_CHECK(((n) & 1) == 1); \
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
if ((n) > 0) { \
*(r) = (pre)[((n)-1)/2]; \
} else { \
secp256k1_ge_neg((r), &(pre)[(-(n)-1)/2]); \
} \
} while(0)
#define ECMULT_TABLE_GET_GE_STORAGE(r,pre,n,w) do { \
VERIFY_CHECK(((n) & 1) == 1); \
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
if ((n) > 0) { \
secp256k1_ge_from_storage((r), &(pre)[((n)-1)/2]); \
} else { \
secp256k1_ge_from_storage((r), &(pre)[(-(n)-1)/2]); \
secp256k1_ge_neg((r), (r)); \
} \
} while(0)
static const size_t SECP256K1_ECMULT_CONTEXT_PREALLOCATED_SIZE =
ROUND_TO_ALIGN(sizeof((*((secp256k1_ecmult_context*) NULL)->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G))
#ifdef USE_ENDOMORPHISM
+ ROUND_TO_ALIGN(sizeof((*((secp256k1_ecmult_context*) NULL)->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G))
#endif
;
static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx) {
ctx->pre_g = NULL;
#ifdef USE_ENDOMORPHISM
ctx->pre_g_128 = NULL;
#endif
}
static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, void **prealloc) {
secp256k1_gej gj;
void* const base = *prealloc;
size_t const prealloc_size = SECP256K1_ECMULT_CONTEXT_PREALLOCATED_SIZE;
if (ctx->pre_g != NULL) {
return;
}
/* get the generator */
secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
ctx->pre_g = (secp256k1_ge_storage (*)[])manual_alloc(prealloc, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G), base, prealloc_size);
/* precompute the tables with odd multiples */
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj);
#ifdef USE_ENDOMORPHISM
{
secp256k1_gej g_128j;
int i;
ctx->pre_g_128 = (secp256k1_ge_storage (*)[])manual_alloc(prealloc, sizeof((*ctx->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G), base, prealloc_size);
/* calculate 2^128*generator */
g_128j = gj;
for (i = 0; i < 128; i++) {
secp256k1_gej_double_var(&g_128j, &g_128j, NULL);
}
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j);
}
#endif
}
static void secp256k1_ecmult_context_finalize_memcpy(secp256k1_ecmult_context *dst, const secp256k1_ecmult_context *src) {
if (src->pre_g != NULL) {
dst->pre_g = (secp256k1_ge_storage (*)[])((unsigned char*)dst + ((unsigned char*)(src->pre_g) - (unsigned char*)src));
}
#ifdef USE_ENDOMORPHISM
if (src->pre_g_128 != NULL) {
dst->pre_g_128 = (secp256k1_ge_storage (*)[])((unsigned char*)dst + ((unsigned char*)(src->pre_g_128) - (unsigned char*)src));
}
#endif
}
static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx) {
return ctx->pre_g != NULL;
}
static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx) {
secp256k1_ecmult_context_init(ctx);
}
/** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits),
* with the following guarantees:
* - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1)
* - two non-zero entries in wnaf are separated by at least w-1 zeroes.
* - the number of set values in wnaf is returned. This number is at most 256, and at most one more
* than the number of bits in the (absolute value) of the input.
*/
static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) {
secp256k1_scalar s = *a;
int last_set_bit = -1;
int bit = 0;
int sign = 1;
int carry = 0;
VERIFY_CHECK(wnaf != NULL);
VERIFY_CHECK(0 <= len && len <= 256);
VERIFY_CHECK(a != NULL);
VERIFY_CHECK(2 <= w && w <= 31);
memset(wnaf, 0, len * sizeof(wnaf[0]));
if (secp256k1_scalar_get_bits(&s, 255, 1)) {
secp256k1_scalar_negate(&s, &s);
sign = -1;
}
while (bit < len) {
int now;
int word;
if (secp256k1_scalar_get_bits(&s, bit, 1) == (unsigned int)carry) {
bit++;
continue;
}
now = w;
if (now > len - bit) {
now = len - bit;
}
word = secp256k1_scalar_get_bits_var(&s, bit, now) + carry;
carry = (word >> (w-1)) & 1;
word -= carry << w;
wnaf[bit] = sign * word;
last_set_bit = bit;
bit += now;
}
#ifdef VERIFY
CHECK(carry == 0);
while (bit < 256) {
CHECK(secp256k1_scalar_get_bits(&s, bit++, 1) == 0);
}
#endif
return last_set_bit + 1;
}
struct secp256k1_strauss_point_state {
#ifdef USE_ENDOMORPHISM
secp256k1_scalar na_1, na_lam;
int wnaf_na_1[130];
int wnaf_na_lam[130];
int bits_na_1;
int bits_na_lam;
#else
int wnaf_na[256];
int bits_na;
#endif
size_t input_pos;
};
struct secp256k1_strauss_state {
secp256k1_gej* prej;
secp256k1_fe* zr;
secp256k1_ge* pre_a;
#ifdef USE_ENDOMORPHISM
secp256k1_ge* pre_a_lam;
#endif
struct secp256k1_strauss_point_state* ps;
};
static void secp256k1_ecmult_strauss_wnaf(const secp256k1_ecmult_context *ctx, const struct secp256k1_strauss_state *state, secp256k1_gej *r, int num, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
secp256k1_ge tmpa;
secp256k1_fe Z;
#ifdef USE_ENDOMORPHISM
/* Splitted G factors. */
secp256k1_scalar ng_1, ng_128;
int wnaf_ng_1[129];
int bits_ng_1 = 0;
int wnaf_ng_128[129];
int bits_ng_128 = 0;
#else
int wnaf_ng[256];
int bits_ng = 0;
#endif
int i;
int bits = 0;
int np;
int no = 0;
for (np = 0; np < num; ++np) {
if (secp256k1_scalar_is_zero(&na[np]) || secp256k1_gej_is_infinity(&a[np])) {
continue;
}
state->ps[no].input_pos = np;
#ifdef USE_ENDOMORPHISM
/* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
secp256k1_scalar_split_lambda(&state->ps[no].na_1, &state->ps[no].na_lam, &na[np]);
/* build wnaf representation for na_1 and na_lam. */
state->ps[no].bits_na_1 = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_1, 130, &state->ps[no].na_1, WINDOW_A);
state->ps[no].bits_na_lam = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na_lam, 130, &state->ps[no].na_lam, WINDOW_A);
VERIFY_CHECK(state->ps[no].bits_na_1 <= 130);
VERIFY_CHECK(state->ps[no].bits_na_lam <= 130);
if (state->ps[no].bits_na_1 > bits) {
bits = state->ps[no].bits_na_1;
}
if (state->ps[no].bits_na_lam > bits) {
bits = state->ps[no].bits_na_lam;
}
#else
/* build wnaf representation for na. */
state->ps[no].bits_na = secp256k1_ecmult_wnaf(state->ps[no].wnaf_na, 256, &na[np], WINDOW_A);
if (state->ps[no].bits_na > bits) {
bits = state->ps[no].bits_na;
}
#endif
++no;
}
/* Calculate odd multiples of a.
* All multiples are brought to the same Z 'denominator', which is stored
* in Z. Due to secp256k1' isomorphism we can do all operations pretending
* that the Z coordinate was 1, use affine addition formulae, and correct
* the Z coordinate of the result once at the end.
* The exception is the precomputed G table points, which are actually
* affine. Compared to the base used for other points, they have a Z ratio
* of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same
* isomorphism to efficiently add with a known Z inverse.
*/
if (no > 0) {
/* Compute the odd multiples in Jacobian form. */
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->prej, state->zr, &a[state->ps[0].input_pos]);
for (np = 1; np < no; ++np) {
secp256k1_gej tmp = a[state->ps[np].input_pos];
#ifdef VERIFY
secp256k1_fe_normalize_var(&(state->prej[(np - 1) * ECMULT_TABLE_SIZE(WINDOW_A) + ECMULT_TABLE_SIZE(WINDOW_A) - 1].z));
#endif
secp256k1_gej_rescale(&tmp, &(state->prej[(np - 1) * ECMULT_TABLE_SIZE(WINDOW_A) + ECMULT_TABLE_SIZE(WINDOW_A) - 1].z));
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->prej + np * ECMULT_TABLE_SIZE(WINDOW_A), state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), &tmp);
secp256k1_fe_mul(state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), &(a[state->ps[np].input_pos].z));
}
/* Bring them to the same Z denominator. */
secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A) * no, state->pre_a, &Z, state->prej, state->zr);
} else {
secp256k1_fe_set_int(&Z, 1);
}
#ifdef USE_ENDOMORPHISM
for (np = 0; np < no; ++np) {
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
secp256k1_ge_mul_lambda(&state->pre_a_lam[np * ECMULT_TABLE_SIZE(WINDOW_A) + i], &state->pre_a[np * ECMULT_TABLE_SIZE(WINDOW_A) + i]);
}
}
if (ng) {
/* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */
secp256k1_scalar_split_128(&ng_1, &ng_128, ng);
/* Build wnaf representation for ng_1 and ng_128 */
bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G);
bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G);
if (bits_ng_1 > bits) {
bits = bits_ng_1;
}
if (bits_ng_128 > bits) {
bits = bits_ng_128;
}
}
#else
if (ng) {
bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, 256, ng, WINDOW_G);
if (bits_ng > bits) {
bits = bits_ng;
}
}
#endif
secp256k1_gej_set_infinity(r);
for (i = bits - 1; i >= 0; i--) {
int n;
secp256k1_gej_double_var(r, r, NULL);
#ifdef USE_ENDOMORPHISM
for (np = 0; np < no; ++np) {
if (i < state->ps[np].bits_na_1 && (n = state->ps[np].wnaf_na_1[i])) {
ECMULT_TABLE_GET_GE(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A);
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
}
if (i < state->ps[np].bits_na_lam && (n = state->ps[np].wnaf_na_lam[i])) {
ECMULT_TABLE_GET_GE(&tmpa, state->pre_a_lam + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A);
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
}
}
if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
}
if (i < bits_ng_128 && (n = wnaf_ng_128[i])) {
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g_128, n, WINDOW_G);
secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
}
#else
for (np = 0; np < no; ++np) {
if (i < state->ps[np].bits_na && (n = state->ps[np].wnaf_na[i])) {
ECMULT_TABLE_GET_GE(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A);
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
}
}
if (i < bits_ng && (n = wnaf_ng[i])) {
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
}
#endif
}
if (!r->infinity) {
secp256k1_fe_mul(&r->z, &r->z, &Z);
}
}
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
secp256k1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
struct secp256k1_strauss_point_state ps[1];
#ifdef USE_ENDOMORPHISM
secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
#endif
struct secp256k1_strauss_state state;
state.prej = prej;
state.zr = zr;
state.pre_a = pre_a;
#ifdef USE_ENDOMORPHISM
state.pre_a_lam = pre_a_lam;
#endif
state.ps = ps;
secp256k1_ecmult_strauss_wnaf(ctx, &state, r, 1, a, na, ng);
}
static size_t secp256k1_strauss_scratch_size(size_t n_points) {
#ifdef USE_ENDOMORPHISM
static const size_t point_size = (2 * sizeof(secp256k1_ge) + sizeof(secp256k1_gej) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar);
#else
static const size_t point_size = (sizeof(secp256k1_ge) + sizeof(secp256k1_gej) + sizeof(secp256k1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct secp256k1_strauss_point_state) + sizeof(secp256k1_gej) + sizeof(secp256k1_scalar);
#endif
return n_points*point_size;
}
static int secp256k1_ecmult_strauss_batch(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) {
secp256k1_gej* points;
secp256k1_scalar* scalars;
struct secp256k1_strauss_state state;
size_t i;
secp256k1_gej_set_infinity(r);
if (inp_g_sc == NULL && n_points == 0) {
return 1;
}
if (!secp256k1_scratch_allocate_frame(scratch, secp256k1_strauss_scratch_size(n_points), STRAUSS_SCRATCH_OBJECTS)) {
return 0;
}
points = (secp256k1_gej*)secp256k1_scratch_alloc(scratch, n_points * sizeof(secp256k1_gej));
scalars = (secp256k1_scalar*)secp256k1_scratch_alloc(scratch, n_points * sizeof(secp256k1_scalar));
state.prej = (secp256k1_gej*)secp256k1_scratch_alloc(scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_gej));
state.zr = (secp256k1_fe*)secp256k1_scratch_alloc(scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_fe));
#ifdef USE_ENDOMORPHISM
state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(scratch, n_points * 2 * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge));
state.pre_a_lam = state.pre_a + n_points * ECMULT_TABLE_SIZE(WINDOW_A);
#else
state.pre_a = (secp256k1_ge*)secp256k1_scratch_alloc(scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(secp256k1_ge));
#endif
state.ps = (struct secp256k1_strauss_point_state*)secp256k1_scratch_alloc(scratch, n_points * sizeof(struct secp256k1_strauss_point_state));
for (i = 0; i < n_points; i++) {
secp256k1_ge point;
if (!cb(&scalars[i], &point, i+cb_offset, cbdata)) {
secp256k1_scratch_deallocate_frame(scratch);
return 0;
}
secp256k1_gej_set_ge(&points[i], &point);
}
secp256k1_ecmult_strauss_wnaf(ctx, &state, r, n_points, points, scalars, inp_g_sc);
secp256k1_scratch_deallocate_frame(scratch);
return 1;
}
/* Wrapper for secp256k1_ecmult_multi_func interface */
static int secp256k1_ecmult_strauss_batch_single(const secp256k1_ecmult_context *actx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n) {
return secp256k1_ecmult_strauss_batch(actx, scratch, r, inp_g_sc, cb, cbdata, n, 0);
}
static size_t secp256k1_strauss_max_points(secp256k1_scratch *scratch) {
return secp256k1_scratch_max_allocation(scratch, STRAUSS_SCRATCH_OBJECTS) / secp256k1_strauss_scratch_size(1);
}
/** Convert a number to WNAF notation.
* The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val.
* It has the following guarantees:
* - each wnaf[i] is either 0 or an odd integer between -(1 << w) and (1 << w)
* - the number of words set is always WNAF_SIZE(w)
* - the returned skew is 0 or 1
*/
static int secp256k1_wnaf_fixed(int *wnaf, const secp256k1_scalar *s, int w) {
int skew = 0;
int pos;
int max_pos;
int last_w;
const secp256k1_scalar *work = s;
if (secp256k1_scalar_is_zero(s)) {
for (pos = 0; pos < WNAF_SIZE(w); pos++) {
wnaf[pos] = 0;
}
return 0;
}
if (secp256k1_scalar_is_even(s)) {
skew = 1;
}
wnaf[0] = secp256k1_scalar_get_bits_var(work, 0, w) + skew;
/* Compute last window size. Relevant when window size doesn't divide the
* number of bits in the scalar */
last_w = WNAF_BITS - (WNAF_SIZE(w) - 1) * w;
/* Store the position of the first nonzero word in max_pos to allow
* skipping leading zeros when calculating the wnaf. */
for (pos = WNAF_SIZE(w) - 1; pos > 0; pos--) {
int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w);
if(val != 0) {
break;
}
wnaf[pos] = 0;
}
max_pos = pos;
pos = 1;
while (pos <= max_pos) {
int val = secp256k1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w);
if ((val & 1) == 0) {
wnaf[pos - 1] -= (1 << w);
wnaf[pos] = (val + 1);
} else {
wnaf[pos] = val;
}
/* Set a coefficient to zero if it is 1 or -1 and the proceeding digit
* is strictly negative or strictly positive respectively. Only change
* coefficients at previous positions because above code assumes that
* wnaf[pos - 1] is odd.
*/
if (pos >= 2 && ((wnaf[pos - 1] == 1 && wnaf[pos - 2] < 0) || (wnaf[pos - 1] == -1 && wnaf[pos - 2] > 0))) {
if (wnaf[pos - 1] == 1) {
wnaf[pos - 2] += 1 << w;
} else {
wnaf[pos - 2] -= 1 << w;
}
wnaf[pos - 1] = 0;
}
++pos;
}
return skew;
}
struct secp256k1_pippenger_point_state {
int skew_na;
size_t input_pos;
};
struct secp256k1_pippenger_state {
int *wnaf_na;
struct secp256k1_pippenger_point_state* ps;
};
/*
* pippenger_wnaf computes the result of a multi-point multiplication as
* follows: The scalars are brought into wnaf with n_wnaf elements each. Then
* for every i < n_wnaf, first each point is added to a "bucket" corresponding
* to the point's wnaf[i]. Second, the buckets are added together such that
* r += 1*bucket[0] + 3*bucket[1] + 5*bucket[2] + ...
*/
static int secp256k1_ecmult_pippenger_wnaf(secp256k1_gej *buckets, int bucket_window, struct secp256k1_pippenger_state *state, secp256k1_gej *r, const secp256k1_scalar *sc, const secp256k1_ge *pt, size_t num) {
size_t n_wnaf = WNAF_SIZE(bucket_window+1);
size_t np;
size_t no = 0;
int i;
int j;
for (np = 0; np < num; ++np) {
if (secp256k1_scalar_is_zero(&sc[np]) || secp256k1_ge_is_infinity(&pt[np])) {
continue;
}
state->ps[no].input_pos = np;
state->ps[no].skew_na = secp256k1_wnaf_fixed(&state->wnaf_na[no*n_wnaf], &sc[np], bucket_window+1);
no++;
}
secp256k1_gej_set_infinity(r);
if (no == 0) {
return 1;
}
for (i = n_wnaf - 1; i >= 0; i--) {
secp256k1_gej running_sum;
for(j = 0; j < ECMULT_TABLE_SIZE(bucket_window+2); j++) {
secp256k1_gej_set_infinity(&buckets[j]);
}
for (np = 0; np < no; ++np) {
int n = state->wnaf_na[np*n_wnaf + i];
struct secp256k1_pippenger_point_state point_state = state->ps[np];
secp256k1_ge tmp;
int idx;
if (i == 0) {
/* correct for wnaf skew */
int skew = point_state.skew_na;
if (skew) {
secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]);
secp256k1_gej_add_ge_var(&buckets[0], &buckets[0], &tmp, NULL);
}
}
if (n > 0) {
idx = (n - 1)/2;
secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &pt[point_state.input_pos], NULL);
} else if (n < 0) {
idx = -(n + 1)/2;
secp256k1_ge_neg(&tmp, &pt[point_state.input_pos]);
secp256k1_gej_add_ge_var(&buckets[idx], &buckets[idx], &tmp, NULL);
}
}
for(j = 0; j < bucket_window; j++) {
secp256k1_gej_double_var(r, r, NULL);
}
secp256k1_gej_set_infinity(&running_sum);
/* Accumulate the sum: bucket[0] + 3*bucket[1] + 5*bucket[2] + 7*bucket[3] + ...
* = bucket[0] + bucket[1] + bucket[2] + bucket[3] + ...
* + 2 * (bucket[1] + 2*bucket[2] + 3*bucket[3] + ...)
* using an intermediate running sum:
* running_sum = bucket[0] + bucket[1] + bucket[2] + ...
*
* The doubling is done implicitly by deferring the final window doubling (of 'r').
*/
for(j = ECMULT_TABLE_SIZE(bucket_window+2) - 1; j > 0; j--) {
secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[j], NULL);
secp256k1_gej_add_var(r, r, &running_sum, NULL);
}
secp256k1_gej_add_var(&running_sum, &running_sum, &buckets[0], NULL);
secp256k1_gej_double_var(r, r, NULL);
secp256k1_gej_add_var(r, r, &running_sum, NULL);
}
return 1;
}
/**
* Returns optimal bucket_window (number of bits of a scalar represented by a
* set of buckets) for a given number of points.
*/
static int secp256k1_pippenger_bucket_window(size_t n) {
#ifdef USE_ENDOMORPHISM
if (n <= 1) {
return 1;
} else if (n <= 4) {
return 2;
} else if (n <= 20) {
return 3;
} else if (n <= 57) {
return 4;
} else if (n <= 136) {
return 5;
} else if (n <= 235) {
return 6;
} else if (n <= 1260) {
return 7;
} else if (n <= 4420) {
return 9;
} else if (n <= 7880) {
return 10;
} else if (n <= 16050) {
return 11;
} else {
return PIPPENGER_MAX_BUCKET_WINDOW;
}
#else
if (n <= 1) {
return 1;
} else if (n <= 11) {
return 2;
} else if (n <= 45) {
return 3;
} else if (n <= 100) {
return 4;
} else if (n <= 275) {
return 5;
} else if (n <= 625) {
return 6;
} else if (n <= 1850) {
return 7;
} else if (n <= 3400) {
return 8;
} else if (n <= 9630) {
return 9;
} else if (n <= 17900) {
return 10;
} else if (n <= 32800) {
return 11;
} else {
return PIPPENGER_MAX_BUCKET_WINDOW;
}
#endif
}
/**
* Returns the maximum optimal number of points for a bucket_window.
*/
static size_t secp256k1_pippenger_bucket_window_inv(int bucket_window) {
switch(bucket_window) {
#ifdef USE_ENDOMORPHISM
case 1: return 1;
case 2: return 4;
case 3: return 20;
case 4: return 57;
case 5: return 136;
case 6: return 235;
case 7: return 1260;
case 8: return 1260;
case 9: return 4420;
case 10: return 7880;
case 11: return 16050;
case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX;
#else
case 1: return 1;
case 2: return 11;
case 3: return 45;
case 4: return 100;
case 5: return 275;
case 6: return 625;
case 7: return 1850;
case 8: return 3400;
case 9: return 9630;
case 10: return 17900;
case 11: return 32800;
case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX;
#endif
}
return 0;
}
#ifdef USE_ENDOMORPHISM
SECP256K1_INLINE static void secp256k1_ecmult_endo_split(secp256k1_scalar *s1, secp256k1_scalar *s2, secp256k1_ge *p1, secp256k1_ge *p2) {
secp256k1_scalar tmp = *s1;
secp256k1_scalar_split_lambda(s1, s2, &tmp);
secp256k1_ge_mul_lambda(p2, p1);
if (secp256k1_scalar_is_high(s1)) {
secp256k1_scalar_negate(s1, s1);
secp256k1_ge_neg(p1, p1);
}
if (secp256k1_scalar_is_high(s2)) {
secp256k1_scalar_negate(s2, s2);
secp256k1_ge_neg(p2, p2);
}
}
#endif
/**
* Returns the scratch size required for a given number of points (excluding
* base point G) without considering alignment.
*/
static size_t secp256k1_pippenger_scratch_size(size_t n_points, int bucket_window) {
#ifdef USE_ENDOMORPHISM
size_t entries = 2*n_points + 2;
#else
size_t entries = n_points + 1;
#endif
size_t entry_size = sizeof(secp256k1_ge) + sizeof(secp256k1_scalar) + sizeof(struct secp256k1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int);
return ((1<<bucket_window) * sizeof(secp256k1_gej) + sizeof(struct secp256k1_pippenger_state) + entries * entry_size);
}
static int secp256k1_ecmult_pippenger_batch(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) {
/* Use 2(n+1) with the endomorphism, n+1 without, when calculating batch
* sizes. The reason for +1 is that we add the G scalar to the list of
* other scalars. */
#ifdef USE_ENDOMORPHISM
size_t entries = 2*n_points + 2;
#else
size_t entries = n_points + 1;
#endif
secp256k1_ge *points;
secp256k1_scalar *scalars;
secp256k1_gej *buckets;
struct secp256k1_pippenger_state *state_space;
size_t idx = 0;
size_t point_idx = 0;
int i, j;
int bucket_window;
(void)ctx;
secp256k1_gej_set_infinity(r);
if (inp_g_sc == NULL && n_points == 0) {
return 1;
}
bucket_window = secp256k1_pippenger_bucket_window(n_points);
if (!secp256k1_scratch_allocate_frame(scratch, secp256k1_pippenger_scratch_size(n_points, bucket_window), PIPPENGER_SCRATCH_OBJECTS)) {
return 0;
}
points = (secp256k1_ge *) secp256k1_scratch_alloc(scratch, entries * sizeof(*points));
scalars = (secp256k1_scalar *) secp256k1_scratch_alloc(scratch, entries * sizeof(*scalars));
state_space = (struct secp256k1_pippenger_state *) secp256k1_scratch_alloc(scratch, sizeof(*state_space));
state_space->ps = (struct secp256k1_pippenger_point_state *) secp256k1_scratch_alloc(scratch, entries * sizeof(*state_space->ps));
state_space->wnaf_na = (int *) secp256k1_scratch_alloc(scratch, entries*(WNAF_SIZE(bucket_window+1)) * sizeof(int));
buckets = (secp256k1_gej *) secp256k1_scratch_alloc(scratch, (1<<bucket_window) * sizeof(*buckets));
if (inp_g_sc != NULL) {
scalars[0] = *inp_g_sc;
points[0] = secp256k1_ge_const_g;
idx++;