|
| 1 | +/************************************************************************* |
| 2 | + * Copyright (c) 2020-2021 Elichai Turkel * |
| 3 | + * Distributed under the CC0 software license, see the accompanying file * |
| 4 | + * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 * |
| 5 | + *************************************************************************/ |
| 6 | + |
| 7 | +#include <stdio.h> |
| 8 | +#include <assert.h> |
| 9 | +#include <string.h> |
| 10 | + |
| 11 | +#include "random.h" |
| 12 | +#include "secp256k1.h" |
| 13 | +#include "secp256k1_ecdh.h" |
| 14 | + |
| 15 | + |
| 16 | +int main(void) { |
| 17 | + unsigned char seckey1[32]; |
| 18 | + unsigned char seckey2[32]; |
| 19 | + unsigned char compressed_pubkey1[33]; |
| 20 | + unsigned char compressed_pubkey2[33]; |
| 21 | + unsigned char shared_secret1[32]; |
| 22 | + unsigned char shared_secret2[32]; |
| 23 | + unsigned char randomize[32]; |
| 24 | + size_t len; |
| 25 | + secp256k1_pubkey pubkey1; |
| 26 | + secp256k1_pubkey pubkey2; |
| 27 | + |
| 28 | + /* The docs in secp256k1.h above the `secp256k1_ec_pubkey_create` function |
| 29 | + * say: "pointer to a context object, initialized for signing" which is why |
| 30 | + * we create a context for signing with the SECP256K1_CONTEXT_SIGN flag. |
| 31 | + * (The docs for `secp256k1_ecdh` don't require any special context, just |
| 32 | + * some initialized context) */ |
| 33 | + secp256k1_context* ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); |
| 34 | + if (!fill_random(randomize, sizeof(randomize))) { |
| 35 | + printf("Failed to generate randomness\n"); |
| 36 | + return 1; |
| 37 | + } |
| 38 | + /* Randomizing the context is recommended to protect against side-channel |
| 39 | + * leakage See `secp256k1_context_randomize` in secp256k1.h for more |
| 40 | + * information about it. This should never fail. */ |
| 41 | + assert(secp256k1_context_randomize(ctx, randomize)); |
| 42 | + |
| 43 | + /*** Key Generation ***/ |
| 44 | + |
| 45 | + /* If the secret key is zero or out of range (bigger than secp256k1's |
| 46 | + * order), we try to sample a new key. Note that the probability of this |
| 47 | + * happening is negligible. */ |
| 48 | + while (1) { |
| 49 | + if (!fill_random(seckey1, sizeof(seckey1)) || !fill_random(seckey2, sizeof(seckey2))) { |
| 50 | + printf("Failed to generate randomness\n"); |
| 51 | + return 1; |
| 52 | + } |
| 53 | + if (secp256k1_ec_seckey_verify(ctx, seckey1) && secp256k1_ec_seckey_verify(ctx, seckey2)) { |
| 54 | + break; |
| 55 | + } |
| 56 | + } |
| 57 | + |
| 58 | + /* Public key creation using a valid context with a verified secret key should never fail */ |
| 59 | + assert(secp256k1_ec_pubkey_create(ctx, &pubkey1, seckey1)); |
| 60 | + assert(secp256k1_ec_pubkey_create(ctx, &pubkey2, seckey2)); |
| 61 | + |
| 62 | + /* Serialize pubkey1 in a compressed form (33 bytes), should always return 1 */ |
| 63 | + len = sizeof(compressed_pubkey1); |
| 64 | + assert(secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey1, &len, &pubkey1, SECP256K1_EC_COMPRESSED)); |
| 65 | + /* Should be the same size as the size of the output, because we passed a 33 bytes array. */ |
| 66 | + assert(len == sizeof(compressed_pubkey1)); |
| 67 | + |
| 68 | + /* Serialize pubkey2 in a compressed form (33 bytes) */ |
| 69 | + len = sizeof(compressed_pubkey2); |
| 70 | + secp256k1_ec_pubkey_serialize(ctx, compressed_pubkey2, &len, &pubkey2, SECP256K1_EC_COMPRESSED); |
| 71 | + assert(len == sizeof(compressed_pubkey2)); |
| 72 | + |
| 73 | + /*** Creating the shared secret ***/ |
| 74 | + |
| 75 | + /* Perform ECDH with seckey1 and pubkey2. Should never fail with a verified |
| 76 | + * seckey and valid pubkey */ |
| 77 | + assert(secp256k1_ecdh(ctx, shared_secret1, &pubkey2, seckey1, NULL, NULL)); |
| 78 | + |
| 79 | + /* Perform ECDH with seckey2 and pubkey1. Should never fail with a verified |
| 80 | + * seckey and valid pubkey */ |
| 81 | + assert(secp256k1_ecdh(ctx, shared_secret2, &pubkey1, seckey2, NULL, NULL)); |
| 82 | + |
| 83 | + /* Both parties should end up with the same shared secret */ |
| 84 | + assert(memcmp(shared_secret1, shared_secret2, sizeof(shared_secret1)) == 0); |
| 85 | + |
| 86 | + printf("Secret Key1: "); |
| 87 | + print_hex(seckey1, sizeof(seckey1)); |
| 88 | + printf("Compressed Pubkey1: "); |
| 89 | + print_hex(compressed_pubkey1, sizeof(compressed_pubkey1)); |
| 90 | + printf("\nSecret Key2: "); |
| 91 | + print_hex(seckey2, sizeof(seckey2)); |
| 92 | + printf("Compressed Pubkey2: "); |
| 93 | + print_hex(compressed_pubkey2, sizeof(compressed_pubkey2)); |
| 94 | + printf("\nShared Secret: "); |
| 95 | + print_hex(shared_secret1, sizeof(shared_secret1)); |
| 96 | + |
| 97 | + /* This will clear everything from the context and free the memory */ |
| 98 | + secp256k1_context_destroy(ctx); |
| 99 | + |
| 100 | + /* It's best practice to try to remove secrets from memory after using them. |
| 101 | + * This is done because some bugs can allow an attacker leak memory, for |
| 102 | + * example through out of bounds array access (see Heartbleed for example). |
| 103 | + * Hence, we overwrite the secret key buffer with zeros. |
| 104 | + * |
| 105 | + * TODO: Prevent these writes from being optimized out, as any good compiler |
| 106 | + * will remove any writes that aren't used. */ |
| 107 | + memset(seckey1, 0, sizeof(seckey1)); |
| 108 | + memset(seckey2, 0, sizeof(seckey2)); |
| 109 | + memset(shared_secret1, 0, sizeof(shared_secret1)); |
| 110 | + memset(shared_secret2, 0, sizeof(shared_secret2)); |
| 111 | + |
| 112 | + return 0; |
| 113 | +} |
0 commit comments