forked from ubiGG/bmminer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
driver-bab.c
3062 lines (2646 loc) · 84.3 KB
/
driver-bab.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright 2013-2014 Andrew Smith
* Copyright 2013 bitfury
*
* BitFury GPIO code originally based on chainminer code:
* https://github.com/bfsb/chainminer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option)
* any later version. See COPYING for more details.
*/
#include "config.h"
#include "compat.h"
#include "miner.h"
#include "sha2.h"
#include "klist.h"
#include <ctype.h>
/*
* Tested on RPi running both Raspbian and Arch
* with BlackArrow BitFury V1 & V2 GPIO Controller
* with 16 chip BlackArrow BitFury boards
*/
#ifndef LINUX
static void bab_detect(__maybe_unused bool hotplug)
{
}
#else
#include <unistd.h>
#include <linux/spi/spidev.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#define BAB_SPI_BUS 0
#define BAB_SPI_CHIP 0
#define BAB_SPI_SPEED 96000
#define BAB_SPI_BUFSIZ 1024
#define BAB_DELAY_USECS 0
#define BAB_TRF_DELAY 0
#define BAB_ADDR(_n) (*((babinfo->gpio) + (_n)))
#define BAB_INP_GPIO(_n) BAB_ADDR((_n) / 10) &= (~(7 << (((_n) % 10) * 3)))
#define BAB_OUT_GPIO(_n) BAB_ADDR((_n) / 10) |= (1 << (((_n) % 10) * 3))
#define BAB_OUT_GPIO_V(_n, _v) BAB_ADDR((_n) / 10) |= (((_v) <= 3 ? (_v) + 4 : \
((_v) == 4 ? 3 : 2)) << (((_n) % 10) * 3))
#define BAB_GPIO_SET BAB_ADDR(7)
#define BAB_GPIO_CLR BAB_ADDR(10)
#define BAB_GPIO_LEVEL BAB_ADDR(13)
// If the V1 test of this many chips finds no chips it will try V2
#define BAB_V1_CHIP_TEST 32
//maximum number of chips per board
#define BAB_BOARDCHIPS 16
#define BAB_MAXBUF (BAB_MAXCHIPS * 512)
#define BAB_V1_BANK 0
//maximum number of alternative banks
#define BAB_MAXBANKS 4
//maximum number of boards in a bank
#define BAB_BANKBOARDS 6
//maximum number of chips on alternative bank
#define BAB_BANKCHIPS (BAB_BOARDCHIPS * BAB_BANKBOARDS)
//maximum number of chips
#define BAB_MAXCHIPS (BAB_MAXBANKS * BAB_BANKCHIPS)
#define BAB_CORES 16
#define BAB_X_COORD 21
#define BAB_Y_COORD 36
#define BAB_NOOP 0
#define BAB_BREAK ((uint8_t *)"\04")
#define BAB_ASYNC ((uint8_t *)"\05")
#define BAB_SYNC ((uint8_t *)"\06")
#define BAB_FFL " - from %s %s() line %d"
#define BAB_FFL_HERE __FILE__, __func__, __LINE__
#define BAB_FFL_PASS file, func, line
#define bab_reset(_bank, _times) _bab_reset(babcgpu, babinfo, _bank, _times)
#define bab_txrx(_item, _det) _bab_txrx(babcgpu, babinfo, _item, _det, BAB_FFL_HERE)
#define bab_add_buf(_item, _data) _bab_add_buf(_item, _data, sizeof(_data)-1, BAB_FFL_HERE)
#define BAB_ADD_BREAK(_item) _bab_add_buf(_item, BAB_BREAK, 1, BAB_FFL_HERE)
#define BAB_ADD_ASYNC(_item) _bab_add_buf(_item, BAB_ASYNC, 1, BAB_FFL_HERE)
#define bab_config_reg(_item, _reg, _ena) _bab_config_reg(_item, _reg, _ena, BAB_FFL_HERE)
#define bab_add_data(_item, _addr, _data, _siz) _bab_add_data(_item, _addr, (const uint8_t *)(_data), _siz, BAB_FFL_HERE)
#define BAB_ADD_NOOPs(_item, _count) _bab_add_noops(_item, _count, BAB_FFL_HERE)
#define BAB_ADD_MIN 4
#define BAB_ADD_MAX 128
#define BAB_BASEA 4
#define BAB_BASEB 61
#define BAB_COUNTERS 16
static const uint8_t bab_counters[BAB_COUNTERS] = {
64, 64,
BAB_BASEA, BAB_BASEA+4,
BAB_BASEA+2, BAB_BASEA+2+16,
BAB_BASEA, BAB_BASEA+1,
(BAB_BASEB)%65, (BAB_BASEB+1)%65,
(BAB_BASEB+3)%65, (BAB_BASEB+3+16)%65,
(BAB_BASEB+4)%65, (BAB_BASEB+4+4)%65,
(BAB_BASEB+3+3)%65, (BAB_BASEB+3+1+3)%65
};
#define BAB_W1 16
static const uint32_t bab_w1[BAB_W1] = {
0, 0, 0, 0xffffffff,
0x80000000, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0x00000280
};
#define BAB_W2 8
static const uint32_t bab_w2[BAB_W2] = {
0x80000000, 0, 0, 0,
0, 0, 0, 0x00000100
};
#define BAB_TEST_DATA 19
static const uint32_t bab_test_data[BAB_TEST_DATA] = {
0xb0e72d8e, 0x1dc5b862, 0xe9e7c4a6, 0x3050f1f5,
0x8a1a6b7e, 0x7ec384e8, 0x42c1c3fc, 0x8ed158a1,
0x8a1a6b7e, 0x6f484872, 0x4ff0bb9b, 0x12c97f07,
0xb0e72d8e, 0x55d979bc, 0x39403296, 0x40f09e84,
0x8a0bb7b7, 0x33af304f, 0x0b290c1a //, 0xf0c4e61f
};
/*
* maximum chip speed available for auto tuner
* speed/nrate/hrate/watt
* 53/ 97/ 100/ 84
* 54/ 98/ 107/ 88
* 55/ 99/ 115/ 93
* 56/ 101/ 125/ 99
*/
#define BAB_MAXSPEED 57
#define BAB_DEFMAXSPEED 55
#define BAB_DEFSPEED 53
#define BAB_MINSPEED 52
#define BAB_ABSMINSPEED 32
/*
* % of errors to tune the speed up or down
* 1.0 to 10.0 should average around 5.5% errors
*/
#define BAB_TUNEUP 1.0
#define BAB_TUNEDOWN 10.0
#define MIDSTATE_BYTES 32
#define MERKLE_OFFSET 64
#define MERKLE_BYTES 12
#define BLOCK_HEADER_BYTES 80
#define MIDSTATE_UINTS (MIDSTATE_BYTES / sizeof(uint32_t))
#define DATA_UINTS ((BLOCK_HEADER_BYTES / sizeof(uint32_t)) - 1)
// Auto adjust
#define BAB_AUTO_REG 0
#define BAB_AUTO_VAL 0x01
// iclk
#define BAB_ICLK_REG 1
#define BAB_ICLK_VAL 0x02
// No fast clock
#define BAB_FAST_REG 2
#define BAB_FAST_VAL 0x04
// Divide by 2
#define BAB_DIV2_REG 3
#define BAB_DIV2_VAL 0x08
// Slow Clock
#define BAB_SLOW_REG 4
#define BAB_SLOW_VAL 0x10
// No oclk
#define BAB_OCLK_REG 6
#define BAB_OCLK_VAL 0x20
// Has configured
#define BAB_CFGD_VAL 0x40
#define BAB_DEFCONF (BAB_AUTO_VAL | \
BAB_ICLK_VAL | \
BAB_DIV2_VAL | \
BAB_SLOW_VAL)
#define BAB_REG_CLR_FROM 7
#define BAB_REG_CLR_TO 11
#define BAB_AUTO_SET(_c) ((_c) & BAB_AUTO_VAL)
#define BAB_ICLK_SET(_c) ((_c) & BAB_ICLK_VAL)
#define BAB_FAST_SET(_c) ((_c) & BAB_FAST_VAL)
#define BAB_DIV2_SET(_c) ((_c) & BAB_DIV2_VAL)
#define BAB_SLOW_SET(_c) ((_c) & BAB_SLOW_VAL)
#define BAB_OCLK_SET(_c) ((_c) & BAB_OCLK_VAL)
#define BAB_CFGD_SET(_c) ((_c) & BAB_CFGD_VAL)
#define BAB_AUTO_BIT(_c) (BAB_AUTO_SET(_c) ? true : false)
#define BAB_ICLK_BIT(_c) (BAB_ICLK_SET(_c) ? false : true)
#define BAB_FAST_BIT(_c) (BAB_FAST_SET(_c) ? true : false)
#define BAB_DIV2_BIT(_c) (BAB_DIV2_SET(_c) ? false : true)
#define BAB_SLOW_BIT(_c) (BAB_SLOW_SET(_c) ? true : false)
#define BAB_OCLK_BIT(_c) (BAB_OCLK_SET(_c) ? true : false)
#define BAB_COUNT_ADDR 0x0100
#define BAB_W1A_ADDR 0x1000
#define BAB_W1B_ADDR 0x1400
#define BAB_W2_ADDR 0x1900
#define BAB_INP_ADDR 0x3000
#define BAB_OSC_ADDR 0x6000
#define BAB_REG_ADDR 0x7000
/*
* valid: 0x01 0x03 0x07 0x0F 0x1F 0x3F 0x7F 0xFF
* max { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F, 0x00 }
* max { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x3F, 0x00 }
* avg { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x00, 0x00 }
* slo { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x3F, 0x00 }
* min { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
* good: 0x1F (97) 0x3F (104) 0x7F (109) 0xFF (104)
*/
#define BAB_OSC 8
static const uint8_t bab_osc_bits[BAB_OSC] =
{ 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F, 0xFF };
static const uint8_t bab_reg_ena[4] = { 0xc1, 0x6a, 0x59, 0xe3 };
static const uint8_t bab_reg_dis[4] = { 0x00, 0x00, 0x00, 0x00 };
#define BAB_NONCE_OFFSETS 3
#define BAB_OFF_0x1C_STA 2
#define BAB_OFF_0x1C_FIN 2
#define BAB_OFF_OTHER_STA 0
#define BAB_OFF_OTHER_FIN 1
#define BAB_EVIL_NONCE 0xe0
#define BAB_EVIL_MASK 0xff
static const uint32_t bab_nonce_offsets[] = {-0x800000, 0, -0x400000};
struct bab_work_send {
uint32_t midstate[MIDSTATE_UINTS];
uint32_t ms3steps[MIDSTATE_UINTS];
uint32_t merkle7;
uint32_t ntime;
uint32_t bits;
};
#define BAB_REPLY_NONCES 16
struct bab_work_reply {
uint32_t nonce[BAB_REPLY_NONCES];
uint32_t jobsel;
uint32_t spichk;
};
#define BAB_CHIP_MIN (sizeof(struct bab_work_reply)+16)
#define ALLOC_WITEMS 1024
#define LIMIT_WITEMS 0
// Work
typedef struct witem {
struct work *work;
struct bab_work_send chip_input;
bool ci_setup;
bool rolled;
int nonces;
struct timeval work_start;
} WITEM;
#define ALLOC_SITEMS 8
#define LIMIT_SITEMS 0
// SPI I/O
typedef struct sitem {
uint32_t siz;
uint8_t wbuf[BAB_MAXBUF];
uint8_t rbuf[BAB_MAXBUF];
uint32_t chip_off[BAB_MAXCHIPS+1];
uint32_t bank_off[BAB_MAXBANKS+2];
// WITEMs used to build the work
K_ITEM *witems[BAB_MAXCHIPS];
struct timeval work_start;
} SITEM;
#define ALLOC_RITEMS 256
#define LIMIT_RITEMS 0
// Results
typedef struct ritem {
int chip;
int nonces;
uint32_t nonce[BAB_REPLY_NONCES];
bool not_first_reply;
struct timeval when;
} RITEM;
#define ALLOC_NITEMS 102400
#define LIMIT_NITEMS 0
// Nonce History
typedef struct nitem {
struct timeval found;
} NITEM;
#define DATAW(_item) ((WITEM *)(_item->data))
#define DATAS(_item) ((SITEM *)(_item->data))
#define DATAR(_item) ((RITEM *)(_item->data))
#define DATAN(_item) ((NITEM *)(_item->data))
// Record the number of each band between work sends
#define BAB_DELAY_BANDS 10
#define BAB_DELAY_BASE 0.5
#define BAB_DELAY_STEP 0.2
#define BAB_CHIP_SPEEDS 6
// less than or equal GH/s
static double chip_speed_ranges[BAB_CHIP_SPEEDS - 1] =
{ 0.0, 0.8, 1.6, 2.2, 2.8 };
// Greater than the last one above means it's the last speed
static char *chip_speed_names[BAB_CHIP_SPEEDS] =
{ "Bad", "V.Slow", "Slow", "OK", "Good", "Fast" };
/*
* This is required to do chip tuning
* If disabled, it will simply run the chips at default speed
* unless they never return valid results
*/
#define UPDATE_HISTORY 1
struct bab_info {
struct thr_info spi_thr;
struct thr_info res_thr;
pthread_mutex_t did_lock;
pthread_mutex_t nonce_lock;
// All GPIO goes through this
volatile unsigned *gpio;
int version;
int spifd;
int chips;
int chips_per_bank[BAB_MAXBANKS+1];
int missing_chips_per_bank[BAB_MAXBANKS+1];
int bank_first_chip[BAB_MAXBANKS+1];
int bank_last_chip[BAB_MAXBANKS+1];
int boards;
int banks;
uint32_t chip_spis[BAB_MAXCHIPS+1];
int reply_wait;
uint64_t reply_waits;
cgsem_t scan_work;
cgsem_t spi_work;
cgsem_t spi_reply;
cgsem_t process_reply;
bool disabled[BAB_MAXCHIPS];
int total_disabled;
struct bab_work_reply chip_results[BAB_MAXCHIPS];
struct bab_work_reply chip_prev[BAB_MAXCHIPS];
uint8_t chip_fast[BAB_MAXCHIPS];
uint8_t chip_conf[BAB_MAXCHIPS];
uint8_t old_fast[BAB_MAXCHIPS];
uint8_t old_conf[BAB_MAXCHIPS];
uint8_t chip_bank[BAB_MAXCHIPS+1];
uint8_t osc[BAB_OSC];
/*
* Ignore errors in the first work reply since
* they may be from a previous run or random junk
* There can be >100 with just one 16 chip board
*/
uint32_t initial_ignored;
bool not_first_reply[BAB_MAXCHIPS];
// Stats
uint64_t core_good[BAB_MAXCHIPS][BAB_CORES];
uint64_t core_bad[BAB_MAXCHIPS][BAB_CORES];
uint64_t chip_spie[BAB_MAXCHIPS]; // spi errors
uint64_t chip_miso[BAB_MAXCHIPS]; // msio errors
uint64_t chip_nonces[BAB_MAXCHIPS];
uint64_t chip_good[BAB_MAXCHIPS];
uint64_t chip_bad[BAB_MAXCHIPS];
uint64_t chip_ncore[BAB_MAXCHIPS][BAB_X_COORD][BAB_Y_COORD];
uint64_t chip_cont_bad[BAB_MAXCHIPS];
uint64_t chip_max_bad[BAB_MAXCHIPS];
uint64_t discarded_e0s;
uint64_t untested_nonces;
uint64_t tested_nonces;
uint64_t new_nonces;
uint64_t ok_nonces;
uint64_t nonce_offset_count[BAB_NONCE_OFFSETS];
uint64_t total_tests;
uint64_t max_tests_per_nonce;
uint64_t total_links;
uint64_t total_proc_links;
uint64_t max_links;
uint64_t max_proc_links;
uint64_t total_work_links;
uint64_t fail;
uint64_t fail_total_tests;
uint64_t fail_total_links;
uint64_t fail_total_work_links;
uint64_t ign_total_tests;
uint64_t ign_total_links;
uint64_t ign_total_work_links;
struct timeval last_sent_work;
uint64_t delay_count;
double delay_min;
double delay_max;
/*
* 0 is below band ranges
* BAB_DELAY_BANDS+1 is above band ranges
*/
uint64_t delay_bands[BAB_DELAY_BANDS+2];
uint64_t send_count;
double send_total;
double send_min;
double send_max;
// Work
K_LIST *wfree_list;
K_STORE *available_work;
K_STORE *chip_work[BAB_MAXCHIPS];
// SPI I/O
K_LIST *sfree_list;
// Waiting to send
K_STORE *spi_list;
// Sent
K_STORE *spi_sent;
// Results
K_LIST *rfree_list;
K_STORE *res_list;
// Nonce History
K_LIST *nfree_list;
K_STORE *good_nonces[BAB_MAXCHIPS];
K_STORE *bad_nonces[BAB_MAXCHIPS];
struct timeval first_work[BAB_MAXCHIPS];
#if UPDATE_HISTORY
uint32_t work_count[BAB_MAXCHIPS];
struct timeval last_tune[BAB_MAXCHIPS];
uint8_t bad_fast[BAB_MAXCHIPS];
bool bad_msg[BAB_MAXCHIPS];
#endif
uint64_t work_unrolled;
uint64_t work_rolled;
// bab-options (in order)
uint8_t max_speed;
uint8_t def_speed;
uint8_t min_speed;
double tune_up;
double tune_down;
uint32_t speed_hz;
uint16_t delay_usecs;
uint64_t trf_delay;
struct timeval last_did;
bool initialised;
};
/*
* Amount of time for history
* Older items in nonce_history are discarded
* 300s / 5 minutes
*/
#define HISTORY_TIME_S 300
/*
* If the SPI I/O thread waits longer than this long for work
* it will report an error saying how long it's waiting
* and again every BAB_STD_WAIT_mS after that
*/
#define BAB_LONG_uS 1200000
/*
* If work wasn't available early enough,
* report every BAB_LONG_WAIT_mS until it is
*/
#define BAB_LONG_WAIT_mS 888
/*
* Some amount of time to wait for work
* before checking how long we've waited
*/
#define BAB_STD_WAIT_mS 888
/*
* How long to wait for the ioctl() to complete (per BANK)
* This is a failsafe in case the ioctl() fails
* since bab_txrx() will already post a wakeup when it completes
* V1 is set to this x 2
* V2 is set to this x active banks
*/
#define BAB_REPLY_WAIT_mS 160
/*
* Work items older than this should not expect results
* It has to allow for the result buffer returned with the next result
* 0.75GH/s takes 5.727s to do a full nonce range
* If HW is too high, consider increasing this to see if work is being
* expired too early (due to slow chips)
*/
#define BAB_WORK_EXPIRE_mS 7800
// Don't send work more often than this
#define BAB_EXPECTED_WORK_DELAY_mS 899
/*
* If a chip only has bad results after this time limit in seconds,
* then switch it down to min_speed
*/
#define BAB_BAD_TO_MIN (HISTORY_TIME_S + 10)
/*
* Also, just to be sure it's actually mining, it must have got this
* many bad results before considering disabling it
*/
#define BAB_BAD_COUNT 100
/*
* If a chip only has bad results after this time limit in seconds,
* then disable it
* A chip only returning bad results will use a lot more CPU than
* an ok chip since all results will be tested against all unexpired
* work that's been sent to the chip
*/
#define BAB_BAD_DEAD (BAB_BAD_TO_MIN * 2)
/*
* Maximum bab_queue_full() will roll work if it is allowed to
* Since work can somtimes (rarely) queue up with many chips,
* limit it to avoid it getting too much range in the pending work
*/
#define BAB_MAX_ROLLTIME 42
static void bab_ms3steps(uint32_t *p)
{
uint32_t a, b, c, d, e, f, g, h, new_e, new_a;
int i;
a = p[0];
b = p[1];
c = p[2];
d = p[3];
e = p[4];
f = p[5];
g = p[6];
h = p[7];
for (i = 0; i < 3; i++) {
new_e = p[i+16] + sha256_k[i] + h + CH(e,f,g) + SHA256_F2(e) + d;
new_a = p[i+16] + sha256_k[i] + h + CH(e,f,g) + SHA256_F2(e) +
SHA256_F1(a) + MAJ(a,b,c);
d = c;
c = b;
b = a;
a = new_a;
h = g;
g = f;
f = e;
e = new_e;
}
p[15] = a;
p[14] = b;
p[13] = c;
p[12] = d;
p[11] = e;
p[10] = f;
p[9] = g;
p[8] = h;
}
static uint32_t bab_decnonce(uint32_t in)
{
uint32_t out;
/* First part load */
out = (in & 0xFF) << 24;
in >>= 8;
/* Byte reversal */
in = (((in & 0xaaaaaaaa) >> 1) | ((in & 0x55555555) << 1));
in = (((in & 0xcccccccc) >> 2) | ((in & 0x33333333) << 2));
in = (((in & 0xf0f0f0f0) >> 4) | ((in & 0x0f0f0f0f) << 4));
out |= (in >> 2) & 0x3FFFFF;
/* Extraction */
if (in & 1)
out |= (1 << 23);
if (in & 2)
out |= (1 << 22);
out -= 0x800004;
return out;
}
static void cleanup_older(struct cgpu_info *babcgpu, int chip, K_ITEM *witem)
{
struct bab_info *babinfo = (struct bab_info *)(babcgpu->device_data);
struct timeval now;
bool expired_item;
K_ITEM *tail;
cgtime(&now);
K_WLOCK(babinfo->chip_work[chip]);
tail = babinfo->chip_work[chip]->tail;
expired_item = false;
// Discard expired work
while (tail) {
if (ms_tdiff(&now, &(DATAW(tail)->work_start)) < BAB_WORK_EXPIRE_mS)
break;
if (tail == witem)
expired_item = true;
k_unlink_item(babinfo->chip_work[chip], tail);
K_WUNLOCK(babinfo->chip_work[chip]);
if (DATAW(tail)->rolled)
free_work(DATAW(tail)->work);
else
work_completed(babcgpu, DATAW(tail)->work);
K_WLOCK(babinfo->chip_work[chip]);
k_add_head(babinfo->wfree_list, tail);
tail = babinfo->chip_work[chip]->tail;
}
// If we didn't expire witem, then remove all older than it
if (!expired_item && witem && witem->next) {
tail = babinfo->chip_work[chip]->tail;
while (tail && tail != witem) {
k_unlink_item(babinfo->chip_work[chip], tail);
K_WUNLOCK(babinfo->chip_work[chip]);
if (DATAW(tail)->rolled)
free_work(DATAW(tail)->work);
else
work_completed(babcgpu, DATAW(tail)->work);
K_WLOCK(babinfo->chip_work[chip]);
k_add_head(babinfo->wfree_list, tail);
tail = babinfo->chip_work[chip]->tail;
}
}
K_WUNLOCK(babinfo->chip_work[chip]);
}
static void _bab_reset(__maybe_unused struct cgpu_info *babcgpu, struct bab_info *babinfo, int bank, int times)
{
const int banks[BAB_MAXBANKS] = { 18, 23, 24, 25 };
int i;
BAB_INP_GPIO(10);
BAB_OUT_GPIO(10);
BAB_INP_GPIO(11);
BAB_OUT_GPIO(11);
if (bank) {
for (i = 0; i < BAB_MAXBANKS; i++) {
BAB_INP_GPIO(banks[i]);
BAB_OUT_GPIO(banks[i]);
if (bank == i+1)
BAB_GPIO_SET = 1 << banks[i];
else
BAB_GPIO_CLR = 1 << banks[i];
}
cgsleep_us(4096);
} else {
for (i = 0; i < BAB_MAXBANKS; i++)
BAB_INP_GPIO(banks[i]);
}
BAB_GPIO_SET = 1 << 11;
for (i = 0; i < times; i++) { // 1us = 1MHz
BAB_GPIO_SET = 1 << 10;
cgsleep_us(1);
BAB_GPIO_CLR = 1 << 10;
cgsleep_us(1);
}
BAB_GPIO_CLR = 1 << 11;
BAB_INP_GPIO(11);
BAB_INP_GPIO(10);
BAB_INP_GPIO(9);
BAB_OUT_GPIO_V(11, 0);
BAB_OUT_GPIO_V(10, 0);
BAB_OUT_GPIO_V(9, 0);
}
// TODO: handle a false return where this is called?
static bool _bab_txrx(struct cgpu_info *babcgpu, struct bab_info *babinfo, K_ITEM *item, bool detect_ignore, const char *file, const char *func, const int line)
{
int bank, i, count, chip1, chip2;
uint32_t siz, pos;
struct spi_ioc_transfer tran;
uintptr_t rbuf, wbuf;
wbuf = (uintptr_t)(DATAS(item)->wbuf);
rbuf = (uintptr_t)(DATAS(item)->rbuf);
siz = (uint32_t)(DATAS(item)->siz);
memset(&tran, 0, sizeof(tran));
tran.speed_hz = babinfo->speed_hz;
tran.delay_usecs = babinfo->delay_usecs;
i = 0;
pos = 0;
for (bank = 0; bank <= BAB_MAXBANKS; bank++) {
if (DATAS(item)->bank_off[bank]) {
bab_reset(bank, 64);
break;
}
}
if (unlikely(bank > BAB_MAXBANKS)) {
applog(LOG_ERR, "%s%d: %s() failed to find a bank" BAB_FFL,
babcgpu->drv->name, babcgpu->device_id,
__func__, BAB_FFL_PASS);
return false;
}
count = 0;
while (siz > 0) {
tran.tx_buf = wbuf;
tran.rx_buf = rbuf;
tran.speed_hz = BAB_SPI_SPEED;
if (pos == DATAS(item)->bank_off[bank]) {
for (; ++bank <= BAB_MAXBANKS; ) {
if (DATAS(item)->bank_off[bank] > pos) {
bab_reset(bank, 64);
break;
}
}
}
if (siz < BAB_SPI_BUFSIZ)
tran.len = siz;
else
tran.len = BAB_SPI_BUFSIZ;
if (pos < DATAS(item)->bank_off[bank] &&
DATAS(item)->bank_off[bank] < (pos + tran.len))
tran.len = DATAS(item)->bank_off[bank] - pos;
for (; i < babinfo->chips; i++) {
if (!DATAS(item)->chip_off[i])
continue;
if (DATAS(item)->chip_off[i] >= pos + tran.len) {
tran.speed_hz = babinfo->chip_spis[i];
break;
}
}
if (unlikely(i > babinfo->chips)) {
applog(LOG_ERR, "%s%d: %s() failed to find chip" BAB_FFL,
babcgpu->drv->name, babcgpu->device_id,
__func__, BAB_FFL_PASS);
return false;
}
if (unlikely(babinfo->chip_spis[i] == BAB_SPI_SPEED)) {
applog(LOG_DEBUG, "%s%d: %s() chip[%d] speed %d shouldn't be %d" BAB_FFL,
babcgpu->drv->name, babcgpu->device_id,
__func__, i, (int)babinfo->chip_spis[i],
BAB_SPI_SPEED, BAB_FFL_PASS);
}
if (unlikely(tran.speed_hz == BAB_SPI_SPEED)) {
applog(LOG_DEBUG, "%s%d: %s() transfer speed %d shouldn't be %d" BAB_FFL,
babcgpu->drv->name, babcgpu->device_id,
__func__, (int)tran.speed_hz,
BAB_SPI_SPEED, BAB_FFL_PASS);
}
count++;
if (ioctl(babinfo->spifd, SPI_IOC_MESSAGE(1), (void *)&tran) < 0) {
if (!detect_ignore || errno != 110) {
for (bank = BAB_MAXBANKS; bank >= 0; bank--) {
if (DATAS(item)->bank_off[bank] &&
pos >= DATAS(item)->bank_off[bank]) {
break;
}
}
for (chip1 = babinfo->chips-1; chip1 >= 0; chip1--) {
if (DATAS(item)->chip_off[chip1] &&
pos >= DATAS(item)->chip_off[chip1]) {
break;
}
}
for (chip2 = babinfo->chips-1; chip2 >= 0; chip2--) {
if (DATAS(item)->chip_off[chip2] &&
(pos + tran.len) >= DATAS(item)->chip_off[chip2]) {
break;
}
}
applog(LOG_ERR, "%s%d: ioctl (%d) siz=%d bank=%d chip=%d-%d"
" failed err=%d" BAB_FFL,
babcgpu->drv->name,
babcgpu->device_id,
count, (int)(tran.len),
bank, chip1, chip2,
errno, BAB_FFL_PASS);
}
return false;
}
siz -= tran.len;
wbuf += tran.len;
rbuf += tran.len;
pos += tran.len;
if (siz > 0 && babinfo->trf_delay > 0)
cgsleep_us(babinfo->trf_delay);
}
cgtime(&(DATAS(item)->work_start));
mutex_lock(&(babinfo->did_lock));
cgtime(&(babinfo->last_did));
mutex_unlock(&(babinfo->did_lock));
return true;
}
static void _bab_add_buf_rev(K_ITEM *item, const uint8_t *data, uint32_t siz, const char *file, const char *func, const int line)
{
uint32_t now_used, i;
uint8_t tmp;
now_used = DATAS(item)->siz;
if (now_used + siz >= BAB_MAXBUF) {
quitfrom(1, file, func, line,
"%s() buffer limit of %d exceeded=%d siz=%d",
__func__, BAB_MAXBUF, (int)(now_used + siz), (int)siz);
}
for (i = 0; i < siz; i++) {
tmp = data[i];
tmp = ((tmp & 0xaa)>>1) | ((tmp & 0x55) << 1);
tmp = ((tmp & 0xcc)>>2) | ((tmp & 0x33) << 2);
tmp = ((tmp & 0xf0)>>4) | ((tmp & 0x0f) << 4);
DATAS(item)->wbuf[now_used + i] = tmp;
}
DATAS(item)->siz += siz;
}
static void _bab_add_buf(K_ITEM *item, const uint8_t *data, size_t siz, const char *file, const char *func, const int line)
{
uint32_t now_used;
now_used = DATAS(item)->siz;
if (now_used + siz >= BAB_MAXBUF) {
quitfrom(1, file, func, line,
"%s() DATAS buffer limit of %d exceeded=%d siz=%d",
__func__, BAB_MAXBUF, (int)(now_used + siz), (int)siz);
}
memcpy(&(DATAS(item)->wbuf[now_used]), data, siz);
DATAS(item)->siz += siz;
}
static void _bab_add_noops(K_ITEM *item, size_t siz, const char *file, const char *func, const int line)
{
uint32_t now_used;
now_used = DATAS(item)->siz;
if (now_used + siz >= BAB_MAXBUF) {
quitfrom(1, file, func, line,
"%s() DATAS buffer limit of %d exceeded=%d siz=%d",
__func__, BAB_MAXBUF, (int)(now_used + siz), (int)siz);
}
memset(&(DATAS(item)->wbuf[now_used]), BAB_NOOP, siz);
DATAS(item)->siz += siz;
}
static void _bab_add_data(K_ITEM *item, uint32_t addr, const uint8_t *data, size_t siz, const char *file, const char *func, const int line)
{
uint8_t tmp[3];
int trf_siz;
if (siz < BAB_ADD_MIN || siz > BAB_ADD_MAX) {
quitfrom(1, file, func, line,
"%s() called with invalid siz=%d (min=%d max=%d)",
__func__, (int)siz, BAB_ADD_MIN, BAB_ADD_MAX);
}
trf_siz = siz / 4;
tmp[0] = (trf_siz - 1) | 0xE0;
tmp[1] = (addr >> 8) & 0xff;
tmp[2] = addr & 0xff;
_bab_add_buf(item, tmp, sizeof(tmp), BAB_FFL_PASS);
_bab_add_buf_rev(item, data, siz, BAB_FFL_PASS);
}
static void _bab_config_reg(K_ITEM *item, uint32_t reg, bool enable, const char *file, const char *func, const int line)
{
if (enable) {
_bab_add_data(item, BAB_REG_ADDR + reg*32,
bab_reg_ena, sizeof(bab_reg_ena), BAB_FFL_PASS);
} else {
_bab_add_data(item, BAB_REG_ADDR + reg*32,
bab_reg_dis, sizeof(bab_reg_dis), BAB_FFL_PASS);
}
}
static void bab_set_osc(struct bab_info *babinfo, int chip)
{
int fast, i;
fast = babinfo->chip_fast[chip];
for (i = 0; i < BAB_OSC && fast > BAB_OSC; i++, fast -= BAB_OSC) {
babinfo->osc[i] = 0xff;
}
if (i < BAB_OSC && fast > 0 && fast <= BAB_OSC)
babinfo->osc[i++] = bab_osc_bits[fast - 1];
for (; i < BAB_OSC; i++)
babinfo->osc[i] = 0x00;
applog(LOG_DEBUG, "@osc(chip=%d) fast=%d 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x", chip, fast, babinfo->osc[0], babinfo->osc[1], babinfo->osc[2], babinfo->osc[3], babinfo->osc[4], babinfo->osc[5], babinfo->osc[6], babinfo->osc[7]);
}
static void bab_put(struct bab_info *babinfo, K_ITEM *sitem)
{
struct bab_work_send *chip_input;
int i, reg, bank = 0;
size_t chip_siz;
BAB_ADD_BREAK(sitem);
for (i = 0; i < babinfo->chips; i++) {
if (babinfo->chip_bank[i] != bank) {
DATAS(sitem)->bank_off[bank] = DATAS(sitem)->siz;
bank = babinfo->chip_bank[i];
BAB_ADD_BREAK(sitem);
}
if (!(babinfo->disabled[i])) {
if (BAB_CFGD_SET(babinfo->chip_conf[i]) || !babinfo->chip_conf[i]) {
bab_set_osc(babinfo, i);
bab_add_data(sitem, BAB_OSC_ADDR, babinfo->osc, sizeof(babinfo->osc));
bab_config_reg(sitem, BAB_ICLK_REG, BAB_ICLK_BIT(babinfo->chip_conf[i]));
bab_config_reg(sitem, BAB_FAST_REG, BAB_FAST_BIT(babinfo->chip_conf[i]));
bab_config_reg(sitem, BAB_DIV2_REG, BAB_DIV2_BIT(babinfo->chip_conf[i]));
bab_config_reg(sitem, BAB_SLOW_REG, BAB_SLOW_BIT(babinfo->chip_conf[i]));
bab_config_reg(sitem, BAB_OCLK_REG, BAB_OCLK_BIT(babinfo->chip_conf[i]));
for (reg = BAB_REG_CLR_FROM; reg <= BAB_REG_CLR_TO; reg++)
bab_config_reg(sitem, reg, false);
if (babinfo->chip_conf[i]) {
bab_add_data(sitem, BAB_COUNT_ADDR, bab_counters, sizeof(bab_counters));
bab_add_data(sitem, BAB_W1A_ADDR, bab_w1, sizeof(bab_w1));
bab_add_data(sitem, BAB_W1B_ADDR, bab_w1, sizeof(bab_w1)/2);
bab_add_data(sitem, BAB_W2_ADDR, bab_w2, sizeof(bab_w2));
babinfo->chip_conf[i] ^= BAB_CFGD_VAL;
}
babinfo->old_fast[i] = babinfo->chip_fast[i];
babinfo->old_conf[i] = babinfo->chip_conf[i];
} else {
if (babinfo->old_fast[i] != babinfo->chip_fast[i]) {
bab_set_osc(babinfo, i);
bab_add_data(sitem, BAB_OSC_ADDR, babinfo->osc, sizeof(babinfo->osc));
babinfo->old_fast[i] = babinfo->chip_fast[i];
}
if (babinfo->old_conf[i] != babinfo->chip_conf[i]) {
if (BAB_ICLK_SET(babinfo->old_conf[i]) !=
BAB_ICLK_SET(babinfo->chip_conf[i]))
bab_config_reg(sitem, BAB_ICLK_REG,
BAB_ICLK_BIT(babinfo->chip_conf[i]));
if (BAB_FAST_SET(babinfo->old_conf[i]) !=
BAB_FAST_SET(babinfo->chip_conf[i]))
bab_config_reg(sitem, BAB_FAST_REG,
BAB_FAST_BIT(babinfo->chip_conf[i]));
if (BAB_DIV2_SET(babinfo->old_conf[i]) !=
BAB_DIV2_SET(babinfo->chip_conf[i]))
bab_config_reg(sitem, BAB_DIV2_REG,
BAB_DIV2_BIT(babinfo->chip_conf[i]));
if (BAB_SLOW_SET(babinfo->old_conf[i]) !=
BAB_SLOW_SET(babinfo->chip_conf[i]))
bab_config_reg(sitem, BAB_SLOW_REG,
BAB_SLOW_BIT(babinfo->chip_conf[i]));
if (BAB_OCLK_SET(babinfo->old_conf[i]) !=
BAB_OCLK_SET(babinfo->chip_conf[i]))