-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1b_circSetup.R
332 lines (277 loc) · 11.6 KB
/
1b_circSetup.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
library(AnnotationDbi)
library(org.Hs.eg.db)
library(DESeq2)
library(tximport)
library(GenomicFeatures)
library(data.table)
library(fst)
library(tidyverse)
# import common functions
source("combinedLinCirc/PD-RNA/functions.R")
# IMPORT METADATA ---------------------------------------------------------
# Converts long sample IDs in the column 'id' to shorter ones:
## PPMI-Phase1-IR1_3432_BL_PP0015-9806_5104-SL-1841_R1.fastq.gz
# is converted to
## 3432
cleanPPMIsampleID <- function(dfToClean){
metadata <- data.table::fread('ppmi/output/BL_iPD_HC_metadata.csv')
ids <- metadata %>%
select(id, fastq_name)
clean <- dfToClean %>%
rename(fastq_name = id) %>%
left_join(ids, by = 'fastq_name') %>%
relocate(id, .before = fastq_name) %>%
mutate(id = as.character(id)) %>%
select(!fastq_name)
return(clean)
}
meta.ppmi <- fread("ppmi/output/BL_iPD_HC_metadata.csv") %>%
rename(
batch = plate,
updrs3 = updrs3_score,
) %>%
mutate(
id = as.character(id),
sex = factor(sex),
age_bin = factor(age_bin),
condition = recode(condition, "HC" = "Control"),
condition = factor(condition, levels = c("Control", "PD")),
batch = factor(batch),
study = "PPMI"
)
meta.icicle <- fread("icicle/output/ICICLE_METADATA.csv") %>%
rename(
batch = run,
age_at_consent = age,
updrs3 = mds_updrs_3_total,
moca = mo_ca_total,
) %>%
mutate(
id = as.character(id),
sex = factor(sex),
age_bin = factor(age_bin),
condition = recode(condition, "HC" = "Control"),
condition = factor(condition, levels = c("Control", "PD")),
batch = factor(batch),
study = "ICICLE-PD"
)
# COLLECT ALIGNMENT INFO --------------------------------------------------
# function to collect ciriquant alignment info
collectAlignInfo <- function(gtfDir) {
# read in gtf file headers
align_info <- map(list.files(gtfDir, full.names = TRUE),
fread,
nrows = 3
)
# tidy up alignment metric names
align_info <- map(align_info, ~ .x %>%
mutate(
`##Sample:` = gsub(`##Sample:`, pattern = "##", replacement = ""),
`##Sample:` = gsub(`##Sample:`, pattern = ":", replacement = "")
))
# format metrics in table and combine all samples together
align_info <- map_dfr(align_info, function(df) {
data.frame(
id = names(df)[2],
total_reads = as.numeric(df[1, 2]),
mapped_reads = as.numeric(df[2, 2]),
circular_reads = as.numeric(df[3, 2])
)
})
return(align_info)
}
# collect ciriquant alignment info
align.ppmi <- collectAlignInfo("circRNA/data/raw/rerun/ppmi/ciriquant/gtf/") %>%
cleanPPMIsampleID()
align.icicle <- collectAlignInfo("circRNA/data/raw/rerun/icicle/ciriquant/gtf/")
# add alignment metrics onto metadata
meta.ppmi <- left_join(meta.ppmi, align.ppmi, by = "id")
meta.icicle <- left_join(meta.icicle, align.icicle, by = "id")
# JUNCTION INFO -----------------------------------------------------------
# function to create the table
createJunctionInfo <- function(gtfDir) {
# use rtracklayer to import CIRIquant output as it's in gtf format
cat("Importing GTFs...\n")
juncInfo <- map(list.files(gtfDir, full.names = TRUE), rtracklayer::import)
# convert to df
juncInfo <- map(juncInfo, as.data.frame)
# get ID names
sample_names <- gsub(
pattern = ".gtf",
replacement = "",
x = list.files(gtfDir)
)
# add ID as a name to each list df
names(juncInfo) <- sample_names
# Merge into one big df adding sample ID as a column
cat("Merging into one DF...\n")
output <- map_df(juncInfo, data.frame, .id = "id")
# format output
output <- output %>%
# rename columns to make more consistent
rename(chr = seqnames, genomic_span = width, CPM = score) %>%
# drop unneeded columns
select(-c(source, type, phase)) %>%
# reformat circ_id into coord_id (chr:start-end:strand)
unite("coord_id", c(circ_id, strand), sep = ":", remove = FALSE) %>% # add strand to the end
mutate(coord_id = gsub(coord_id, pattern = "\\|", replacement = "-")) %>% # replace | with -
# drop the now redundant circ_id column
select(!circ_id)
return(output)
}
# create the junction info df
junc_info.ppmi <- createJunctionInfo("circRNA/data/raw/rerun/ppmi/ciriquant/gtf/")
junc_info.ppmi <- junc_info.ppmi %>%
cleanPPMIsampleID() %>%
mutate(
study = "PPMI",
bsj = as.numeric(bsj),
fsj = as.numeric(fsj),
junc_ratio = as.numeric(junc_ratio)
)
junc_info.icicle <- createJunctionInfo("circRNA/data/raw/rerun/icicle/ciriquant/gtf/") %>%
mutate(
study = "ICICLE-PD",
bsj = as.numeric(bsj),
fsj = as.numeric(fsj),
junc_ratio = as.numeric(junc_ratio)
)
# add on exon counts
## import exon counts
exons.ppmi <- read_delim("circRNA/data/exonCount_ppmi.bed", col_names = FALSE) %>%
select(coord_id = X4, exonCount = X7)
exons.icicle <- read_delim("circRNA/data/exonCount_icicle.bed", col_names = FALSE) %>%
select(coord_id = X4, exonCount = X7)
## add onto junc_info files
junc_info.ppmi <- left_join(junc_info.ppmi, exons.ppmi, by = "coord_id")
junc_info.icicle <- left_join(junc_info.icicle, exons.icicle, by = "coord_id")
# add on condition
junc_info.ppmi <- left_join(junc_info.ppmi, meta.ppmi[, c("id", "condition")], by = "id")
junc_info.icicle <- left_join(junc_info.icicle, meta.icicle[, c("id", "condition")], by = "id")
# BSJ-SAMPLE METRICS ------------------------------------------------------
# function to calculate sample specific BSJ metrics
getBSJsampleMetrics <- function(juncInfo, metadata) {
# unique BSJ and summed backsplice CPM
uniqueBSJ_and_sumBSJ <- juncInfo %>%
group_by(id) %>%
summarise(
sum_bsj = sum(bsj),
unique_bsj = n_distinct(coord_id)
)
# number of unique BSJ host genes (MULTIMAPPED BSJs ARE REMOVED!!!)
unique_hostBSJ <- juncInfo %>%
filter(!grepl(",", gene_name)) %>%
group_by(id) %>%
summarise(unique_hostBSJ = n_distinct(gene_id))
# add onto metadata
metadata <- left_join(metadata, uniqueBSJ_and_sumBSJ, by = "id")
metadata <- left_join(metadata, unique_hostBSJ, by = "id")
# normalise unique BSJ + unique BSJ host genes by mapped reads
metadata <- metadata %>%
mutate(
sum_bsj_perMapped = (sum_bsj / salmon_mapped) * 1e+06,
unique_bsj_perMapped = (unique_bsj / salmon_mapped) * 1e+06,
unique_hostBSJ_perMapped = (unique_hostBSJ / salmon_mapped) * 1e+06
)
return(metadata)
}
# run function adding BSJ metrics to sample metadata
meta.ppmi <- getBSJsampleMetrics(juncInfo = junc_info.ppmi, metadata = meta.ppmi)
meta.icicle <- getBSJsampleMetrics(juncInfo = junc_info.icicle, metadata = meta.icicle)
# remove samples not ran through BSJ detection pipeline to make it easier to
# use the metadata file downstream
meta.ppmi <- meta.ppmi %>% filter(id %in% unique(junc_info.ppmi$id))
meta.icicle <- meta.icicle %>% filter(id %in% unique(junc_info.icicle$id))
# ADD COUNTS NORMALISED TO SALMON MAPPED TO JUNC INFO ---------------------
junc_info.ppmi <- junc_info.ppmi %>%
left_join(meta.ppmi[, c('id', 'salmon_mapped')], by = 'id') %>%
mutate(bsj_perMapped = (bsj / salmon_mapped) * 1e+06,
fsj_perMapped = (fsj / salmon_mapped) * 1e+06) %>%
# drop salmon mapped reads to make junc file a bit smaller
select(-salmon_mapped)
junc_info.icicle <- junc_info.icicle %>%
left_join(meta.icicle[, c('id', 'salmon_mapped')], by = 'id') %>%
mutate(bsj_perMapped = (bsj / salmon_mapped) * 1e+06,
fsj_perMapped = (fsj / salmon_mapped) * 1e+06) %>%
# drop salmon mapped reads to make junc file a bit smaller
select(-salmon_mapped)
# EXPORT METADATA ---------------------------------------------------------
write_rds(meta.ppmi, "circRNA/data/ppmi_metadata.rds")
write_rds(meta.icicle, "circRNA/data/icicle_metadata.rds")
# EXPORT JUNCTION INFO ----------------------------------------------------
junc_info.bound <- bind_rows(junc_info.ppmi, junc_info.icicle)
write_fst(junc_info.bound, "circRNA/data/bound_juncInfo.fst")
# EXPORT JUNCTION LEVEL MATRICES ------------------------------------------
# function to create count matrix for BSJ + FSJ counts
createJuncMatrix <- function(juncInfo, junctionType) {
juncInfo %>% pivot_wider(id_cols = coord_id, names_from = id, values_from = {{ junctionType }}, values_fill = 0)
}
# create + export the BSJ count matrices
bsj_matrix.ppmi <- createJuncMatrix(junc_info.ppmi, "bsj")
write_fst(bsj_matrix.ppmi, "circRNA/data/ppmi_BSJrawCounts.fst")
bsj_matrix.icicle <- createJuncMatrix(junc_info.icicle, "bsj")
write_fst(bsj_matrix.icicle, "circRNA/data/icicle_BSJrawCounts.fst")
# create + export the FSJ count matrices
fsj_matrix.ppmi <- createJuncMatrix(junc_info.ppmi, "fsj")
write_fst(fsj_matrix.ppmi, "circRNA/data/ppmi_FSJrawCounts.fst")
fsj_matrix.icicle <- createJuncMatrix(junc_info.icicle, "fsj")
write_fst(fsj_matrix.icicle, "circRNA/data/icicle_FSJrawCounts.fst")
# SET UP DDS OBJECTS ------------------------------------------------------
# match order of metadata and counts
matchMetaCountMatrix <- function(countMatrix, metadata) {
# move coord id into the rowname
countMatrix <- countMatrix %>% column_to_rownames('coord_id')
# match orders of metadata and IDs in txi countMatrix
countMatrix <- countMatrix[, match(metadata$id, colnames(countMatrix))]
# check they're the same
same <- identical(colnames(countMatrix), metadata$id)
stopifnot(same)
cat(paste0("Do colnames of count matrix and metadata IDs match? ", same, "\n"))
# return count matrix
return(countMatrix)
}
bsj_matrix.ppmi <- matchMetaCountMatrix(countMatrix = bsj_matrix.ppmi, metadata = meta.ppmi)
bsj_matrix.icicle <- matchMetaCountMatrix(countMatrix = bsj_matrix.icicle, metadata = meta.icicle)
fsj_matrix.ppmi <- matchMetaCountMatrix(countMatrix = fsj_matrix.ppmi, metadata = meta.ppmi)
fsj_matrix.icicle <- matchMetaCountMatrix(countMatrix = fsj_matrix.icicle, metadata = meta.icicle)
# CREATE DESEQDATASETS
# specify design formula (just condition before QC)
design.ppmi <- ~ condition
design.icicle <- ~ condition
# create DDS
bsj_dds.ppmi <- DESeqDataSetFromMatrix(
countData = bsj_matrix.ppmi,
colData = meta.ppmi,
design = design.ppmi
)
bsj_dds.icicle <- DESeqDataSetFromMatrix(
countData = bsj_matrix.icicle,
colData = meta.icicle,
design = design.icicle
)
fsj_dds.ppmi <- DESeqDataSetFromMatrix(
countData = fsj_matrix.ppmi,
colData = meta.ppmi,
design = design.ppmi
)
fsj_dds.icicle <- DESeqDataSetFromMatrix(
countData = fsj_matrix.icicle,
colData = meta.icicle,
design = design.icicle
)
# NORMALISATION BASED ON LINEAR SIZE FACTORS
# get size factors from linear RNA quantification
sf.ppmi <- read_rds("linear/data/ppmi_linearSizeFactors.rds")
sf.ppmi <- sf.ppmi[names(bsj_matrix.ppmi)] # ensure only samples included in BSJ detection are there
sf.icicle <- read_rds("linear/data/icicle_linearSizeFactors.rds")
sf.icicle <- sf.icicle[names(bsj_matrix.icicle)] # ensure only samples included in BSJ detection are there
# add size factors onto DDS objects
sizeFactors(bsj_dds.ppmi) <- sf.ppmi
sizeFactors(bsj_dds.icicle) <- sf.icicle
sizeFactors(fsj_dds.ppmi) <- sf.ppmi
sizeFactors(fsj_dds.icicle) <- sf.icicle
# SAVE PRE FILTERED AND DE DDS
write_rds(bsj_dds.ppmi, 'circRNA/data/ppmi_bsj_DDS_preFilter.rds')
write_rds(bsj_dds.icicle, 'circRNA/data/icicle_bsj_DDS_preFilter.rds')
write_rds(fsj_dds.ppmi, 'circRNA/data/ppmi_fsj_DDS_preFilter.rds')
write_rds(fsj_dds.icicle, 'circRNA/data/icicle_fsj_DDS_preFilter.rds')