-
Notifications
You must be signed in to change notification settings - Fork 106
/
Copy pathmaximize-grid-happiness.py
108 lines (97 loc) · 4.03 KB
/
maximize-grid-happiness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# Time: O(C(m * n, i) * C(m * n - i, e))
# Space: O(min(m * n, i + e))
class Solution(object):
def getMaxGridHappiness(self, m, n, introvertsCount, extrovertsCount):
"""
:type m: int
:type n: int
:type introvertsCount: int
:type extrovertsCount: int
:rtype: int
"""
def left(curr):
return curr[-1] if len(curr)%n else 0
def up(curr):
return curr[-n] if len(curr) >= n else 0
def count_total(curr, t, total):
return (total
- 30*((left(curr) == 1)+(up(curr) == 1))
+ 20*((left(curr) == 2)+(up(curr) == 2))
+ (120 - 30*((left(curr) != 0)+(up(curr) != 0)))*(t == 1)
+ ( 40 + 20*((left(curr) != 0)+(up(curr) != 0)))*(t == 2))
def iter_backtracking(i, e):
result = 0
curr = []
stk = [(2, (i, e, 0))]
while stk:
step, params = stk.pop()
if step == 2:
i, e, total = params
if len(curr) == m*n or (i == 0 and e == 0):
result = max(result, total)
continue
if total + (i+e)*120 < result: # pruning
continue
if e > 0:
stk.append((3, tuple()))
stk.append((2, (i, e-1, count_total(curr, 2, total))))
stk.append((1, (2,)))
if i > 0:
stk.append((3, tuple()))
stk.append((2, (i-1, e, count_total(curr, 1, total))))
stk.append((1, (1,)))
if left(curr) or up(curr): # leave unoccupied iff left or up is occupied
stk.append((3, tuple()))
stk.append((2, (i, e, total)))
stk.append((1, (0,)))
elif step == 1:
x = params[0]
curr.append(x)
elif step == 3:
curr.pop()
return result
return iter_backtracking(introvertsCount, extrovertsCount)
# Time: O(C(m * n, i) * C(m * n - i, e))
# Space: O(min(m * n, i + e))
class Solution2(object):
def getMaxGridHappiness(self, m, n, introvertsCount, extrovertsCount):
"""
:type m: int
:type n: int
:type introvertsCount: int
:type extrovertsCount: int
:rtype: int
"""
def left(curr):
return curr[-1] if len(curr)%n else 0
def up(curr):
return curr[-n] if len(curr) >= n else 0
def count_total(curr, t, total):
return (total
- 30*((left(curr) == 1)+(up(curr) == 1))
+ 20*((left(curr) == 2)+(up(curr) == 2))
+ (120 - 30*((left(curr) != 0)+(up(curr) != 0)))*(t == 1)
+ ( 40 + 20*((left(curr) != 0)+(up(curr) != 0)))*(t == 2))
def backtracking(i, e, total, curr, result):
if len(curr) == m*n or (i == 0 and e == 0):
result[0] = max(result[0], total)
return
if total + (i+e)*120 < result[0]: # pruning
return
if left(curr) or up(curr): # leave unoccupied iff left or up is occupied
curr.append(0)
backtracking(i, e, total, curr, result)
curr.pop()
if i > 0:
new_total = count_total(curr, 1, total)
curr.append(1)
backtracking(i-1, e, new_total, curr, result)
curr.pop()
if e > 0:
new_total = count_total(curr, 2, total)
curr.append(2)
backtracking(i, e-1, new_total, curr, result)
curr.pop()
result = [0]
backtracking(introvertsCount, extrovertsCount, 0, [], result)
return result[0]