Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Train on UCF101 #9

Open
Morning-YU opened this issue Nov 11, 2021 · 0 comments
Open

Train on UCF101 #9

Morning-YU opened this issue Nov 11, 2021 · 0 comments

Comments

@Morning-YU
Copy link

I use the following parameters and take mobilenet and resnet-50 which trained by TSN as pre-trained. But the training results are strange!From the beginning, the training accuracy has reached 100%, while the test accuracy is basically unchanged.
CUDA_VISIBLE_DEVICES=4 python stage1.py
dataset=ucf101
data_dir=/data/ymy/data/
train_stage=1
batch_size=32
num_segments_glancer=8
num_segments_focuser=12
glance_size=224
patch_size=144
random_patch=True
epochs=50
backbone_lr=0.001
fc_lr=0.01
lr_type=step
dropout=0.5
load_pretrained_focuser_fc=False
dist_url=tcp://127.0.0.1:8816
eval_freq=1
start_eval=0
print_freq=25
workers=16
pretrained_glancer='/AdaFocus-main/new_mobile.tar'
pretrained_focuser='/AdaFocus-main/new_resnet.tar'

Epoch: [5][ 0/298] Time 43.183 (43.183) Data 42.607 (42.607) Loss 1.1841e-03 (1.1841e-03) Acc@1 100.00 (100.00) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][ 25/298] Time 0.674 ( 2.839) Data 0.107 ( 2.276) Loss 1.7993e-03 (8.2321e-03) Acc@1 100.00 ( 99.76) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][ 50/298] Time 1.080 ( 2.122) Data 0.526 ( 1.560) Loss 1.7797e-02 (1.1389e-02) Acc@1 100.00 ( 99.63) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][ 75/298] Time 0.615 ( 1.833) Data 0.048 ( 1.272) Loss 2.5565e-04 (1.1153e-02) Acc@1 100.00 ( 99.63) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][100/298] Time 0.624 ( 1.724) Data 0.056 ( 1.163) Loss 1.6186e-03 (9.6181e-03) Acc@1 100.00 ( 99.72) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][125/298] Time 0.640 ( 1.601) Data 0.082 ( 1.041) Loss 6.2654e-02 (9.9088e-03) Acc@1 96.88 ( 99.68) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][150/298] Time 0.618 ( 1.596) Data 0.061 ( 1.036) Loss 1.9718e-04 (9.0484e-03) Acc@1 100.00 ( 99.71) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][175/298] Time 0.673 ( 1.526) Data 0.107 ( 0.965) Loss 1.8096e-03 (9.6376e-03) Acc@1 100.00 ( 99.70) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][200/298] Time 0.630 ( 1.523) Data 0.061 ( 0.962) Loss 2.6468e-03 (9.3167e-03) Acc@1 100.00 ( 99.72) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][225/298] Time 11.313 ( 1.514) Data 10.754 ( 0.952) Loss 9.3352e-03 (9.5301e-03) Acc@1 100.00 ( 99.72) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][250/298] Time 0.643 ( 1.475) Data 0.086 ( 0.913) Loss 1.7089e-03 (1.0416e-02) Acc@1 100.00 ( 99.70) Acc@5 100.00 ( 99.99) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][275/298] Time 0.604 ( 1.472) Data 0.046 ( 0.910) Loss 1.3999e-03 (9.9850e-03) Acc@1 100.00 ( 99.73) Acc@5 100.00 ( 99.99) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][297/298] Time 0.647 ( 1.410) Data 0.094 ( 0.848) Loss 1.0134e-03 (1.0606e-02) Acc@1 100.00 ( 99.72) Acc@5 100.00 ( 99.98) Focuser BackBone LR: 0.001 FC LR: 0
Test: [ 0/119] Time 21.262 (21.262) Loss 6.7998e-01 (6.7998e-01) Acc@1 81.25 ( 81.25) Acc@5 100.00 (100.00)
Test: [ 25/119] Time 0.381 ( 1.223) Loss 2.3228e-01 (6.1051e-01) Acc@1 93.75 ( 85.10) Acc@5 100.00 ( 97.60)
Test: [ 50/119] Time 0.366 ( 0.818) Loss 4.2509e-01 (8.5970e-01) Acc@1 93.75 ( 81.07) Acc@5 96.88 ( 95.22)
Test: [ 75/119] Time 0.406 ( 0.680) Loss 2.0299e-01 (1.0306e+00) Acc@1 93.75 ( 78.12) Acc@5 100.00 ( 93.09)
Test: [100/119] Time 0.362 ( 0.609) Loss 3.9213e-01 (9.9937e-01) Acc@1 96.88 ( 78.53) Acc@5 96.88 ( 93.56)
Test: [118/119] Time 0.122 ( 0.571) Loss 1.6555e+00 (9.4728e-01) Acc@1 28.57 ( 79.33) Acc@5 100.00 ( 94.00)
Testing Results: Prec@1 79.329 Prec@5 93.999 Loss 0.94728

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant