You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I use the following parameters and take mobilenet and resnet-50 which trained by TSN as pre-trained. But the training results are strange!From the beginning, the training accuracy has reached 100%, while the test accuracy is basically unchanged.
CUDA_VISIBLE_DEVICES=4 python stage1.py
dataset=ucf101
data_dir=/data/ymy/data/
train_stage=1
batch_size=32
num_segments_glancer=8
num_segments_focuser=12
glance_size=224
patch_size=144
random_patch=True
epochs=50
backbone_lr=0.001
fc_lr=0.01
lr_type=step
dropout=0.5
load_pretrained_focuser_fc=False
dist_url=tcp://127.0.0.1:8816
eval_freq=1
start_eval=0
print_freq=25
workers=16
pretrained_glancer='/AdaFocus-main/new_mobile.tar'
pretrained_focuser='/AdaFocus-main/new_resnet.tar'
Epoch: [5][ 0/298] Time 43.183 (43.183) Data 42.607 (42.607) Loss 1.1841e-03 (1.1841e-03) Acc@1 100.00 (100.00) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][ 25/298] Time 0.674 ( 2.839) Data 0.107 ( 2.276) Loss 1.7993e-03 (8.2321e-03) Acc@1 100.00 ( 99.76) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][ 50/298] Time 1.080 ( 2.122) Data 0.526 ( 1.560) Loss 1.7797e-02 (1.1389e-02) Acc@1 100.00 ( 99.63) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][ 75/298] Time 0.615 ( 1.833) Data 0.048 ( 1.272) Loss 2.5565e-04 (1.1153e-02) Acc@1 100.00 ( 99.63) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][100/298] Time 0.624 ( 1.724) Data 0.056 ( 1.163) Loss 1.6186e-03 (9.6181e-03) Acc@1 100.00 ( 99.72) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][125/298] Time 0.640 ( 1.601) Data 0.082 ( 1.041) Loss 6.2654e-02 (9.9088e-03) Acc@1 96.88 ( 99.68) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][150/298] Time 0.618 ( 1.596) Data 0.061 ( 1.036) Loss 1.9718e-04 (9.0484e-03) Acc@1 100.00 ( 99.71) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][175/298] Time 0.673 ( 1.526) Data 0.107 ( 0.965) Loss 1.8096e-03 (9.6376e-03) Acc@1 100.00 ( 99.70) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][200/298] Time 0.630 ( 1.523) Data 0.061 ( 0.962) Loss 2.6468e-03 (9.3167e-03) Acc@1 100.00 ( 99.72) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][225/298] Time 11.313 ( 1.514) Data 10.754 ( 0.952) Loss 9.3352e-03 (9.5301e-03) Acc@1 100.00 ( 99.72) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][250/298] Time 0.643 ( 1.475) Data 0.086 ( 0.913) Loss 1.7089e-03 (1.0416e-02) Acc@1 100.00 ( 99.70) Acc@5 100.00 ( 99.99) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][275/298] Time 0.604 ( 1.472) Data 0.046 ( 0.910) Loss 1.3999e-03 (9.9850e-03) Acc@1 100.00 ( 99.73) Acc@5 100.00 ( 99.99) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][297/298] Time 0.647 ( 1.410) Data 0.094 ( 0.848) Loss 1.0134e-03 (1.0606e-02) Acc@1 100.00 ( 99.72) Acc@5 100.00 ( 99.98) Focuser BackBone LR: 0.001 FC LR: 0
Test: [ 0/119] Time 21.262 (21.262) Loss 6.7998e-01 (6.7998e-01) Acc@1 81.25 ( 81.25) Acc@5 100.00 (100.00)
Test: [ 25/119] Time 0.381 ( 1.223) Loss 2.3228e-01 (6.1051e-01) Acc@1 93.75 ( 85.10) Acc@5 100.00 ( 97.60)
Test: [ 50/119] Time 0.366 ( 0.818) Loss 4.2509e-01 (8.5970e-01) Acc@1 93.75 ( 81.07) Acc@5 96.88 ( 95.22)
Test: [ 75/119] Time 0.406 ( 0.680) Loss 2.0299e-01 (1.0306e+00) Acc@1 93.75 ( 78.12) Acc@5 100.00 ( 93.09)
Test: [100/119] Time 0.362 ( 0.609) Loss 3.9213e-01 (9.9937e-01) Acc@1 96.88 ( 78.53) Acc@5 96.88 ( 93.56)
Test: [118/119] Time 0.122 ( 0.571) Loss 1.6555e+00 (9.4728e-01) Acc@1 28.57 ( 79.33) Acc@5 100.00 ( 94.00)
Testing Results: Prec@1 79.329 Prec@5 93.999 Loss 0.94728
The text was updated successfully, but these errors were encountered:
I use the following parameters and take mobilenet and resnet-50 which trained by TSN as pre-trained. But the training results are strange!From the beginning, the training accuracy has reached 100%, while the test accuracy is basically unchanged.
CUDA_VISIBLE_DEVICES=4 python stage1.py
dataset=ucf101
data_dir=/data/ymy/data/
train_stage=1
batch_size=32
num_segments_glancer=8
num_segments_focuser=12
glance_size=224
patch_size=144
random_patch=True
epochs=50
backbone_lr=0.001
fc_lr=0.01
lr_type=step
dropout=0.5
load_pretrained_focuser_fc=False
dist_url=tcp://127.0.0.1:8816
eval_freq=1
start_eval=0
print_freq=25
workers=16
pretrained_glancer='/AdaFocus-main/new_mobile.tar'
pretrained_focuser='/AdaFocus-main/new_resnet.tar'
Epoch: [5][ 0/298] Time 43.183 (43.183) Data 42.607 (42.607) Loss 1.1841e-03 (1.1841e-03) Acc@1 100.00 (100.00) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][ 25/298] Time 0.674 ( 2.839) Data 0.107 ( 2.276) Loss 1.7993e-03 (8.2321e-03) Acc@1 100.00 ( 99.76) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][ 50/298] Time 1.080 ( 2.122) Data 0.526 ( 1.560) Loss 1.7797e-02 (1.1389e-02) Acc@1 100.00 ( 99.63) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][ 75/298] Time 0.615 ( 1.833) Data 0.048 ( 1.272) Loss 2.5565e-04 (1.1153e-02) Acc@1 100.00 ( 99.63) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][100/298] Time 0.624 ( 1.724) Data 0.056 ( 1.163) Loss 1.6186e-03 (9.6181e-03) Acc@1 100.00 ( 99.72) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][125/298] Time 0.640 ( 1.601) Data 0.082 ( 1.041) Loss 6.2654e-02 (9.9088e-03) Acc@1 96.88 ( 99.68) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][150/298] Time 0.618 ( 1.596) Data 0.061 ( 1.036) Loss 1.9718e-04 (9.0484e-03) Acc@1 100.00 ( 99.71) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][175/298] Time 0.673 ( 1.526) Data 0.107 ( 0.965) Loss 1.8096e-03 (9.6376e-03) Acc@1 100.00 ( 99.70) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][200/298] Time 0.630 ( 1.523) Data 0.061 ( 0.962) Loss 2.6468e-03 (9.3167e-03) Acc@1 100.00 ( 99.72) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][225/298] Time 11.313 ( 1.514) Data 10.754 ( 0.952) Loss 9.3352e-03 (9.5301e-03) Acc@1 100.00 ( 99.72) Acc@5 100.00 (100.00) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][250/298] Time 0.643 ( 1.475) Data 0.086 ( 0.913) Loss 1.7089e-03 (1.0416e-02) Acc@1 100.00 ( 99.70) Acc@5 100.00 ( 99.99) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][275/298] Time 0.604 ( 1.472) Data 0.046 ( 0.910) Loss 1.3999e-03 (9.9850e-03) Acc@1 100.00 ( 99.73) Acc@5 100.00 ( 99.99) Focuser BackBone LR: 0.001 FC LR: 0
Epoch: [5][297/298] Time 0.647 ( 1.410) Data 0.094 ( 0.848) Loss 1.0134e-03 (1.0606e-02) Acc@1 100.00 ( 99.72) Acc@5 100.00 ( 99.98) Focuser BackBone LR: 0.001 FC LR: 0
Test: [ 0/119] Time 21.262 (21.262) Loss 6.7998e-01 (6.7998e-01) Acc@1 81.25 ( 81.25) Acc@5 100.00 (100.00)
Test: [ 25/119] Time 0.381 ( 1.223) Loss 2.3228e-01 (6.1051e-01) Acc@1 93.75 ( 85.10) Acc@5 100.00 ( 97.60)
Test: [ 50/119] Time 0.366 ( 0.818) Loss 4.2509e-01 (8.5970e-01) Acc@1 93.75 ( 81.07) Acc@5 96.88 ( 95.22)
Test: [ 75/119] Time 0.406 ( 0.680) Loss 2.0299e-01 (1.0306e+00) Acc@1 93.75 ( 78.12) Acc@5 100.00 ( 93.09)
Test: [100/119] Time 0.362 ( 0.609) Loss 3.9213e-01 (9.9937e-01) Acc@1 96.88 ( 78.53) Acc@5 96.88 ( 93.56)
Test: [118/119] Time 0.122 ( 0.571) Loss 1.6555e+00 (9.4728e-01) Acc@1 28.57 ( 79.33) Acc@5 100.00 ( 94.00)
Testing Results: Prec@1 79.329 Prec@5 93.999 Loss 0.94728
The text was updated successfully, but these errors were encountered: