-
Notifications
You must be signed in to change notification settings - Fork 1
/
encode.py
116 lines (97 loc) · 3.28 KB
/
encode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import argparse
import contextlib
import sys
from collections import Counter
from multiprocessing import Pool
from tokenization_bert import BertTokenizer
from blingfire import text_to_words
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--inputs",
nargs="+",
default=['-'],
help="input files to filter/encode",
)
parser.add_argument(
"--outputs",
nargs="+",
default=['-'],
help="path to save encoded outputs",
)
parser.add_argument(
"--keep-empty",
action="store_true",
help="keep empty lines",
)
parser.add_argument(
"--tokenizer",
type=str,
default='bpe',
help="which tokenizer to use",
)
parser.add_argument("--workers", type=int, default=20)
args = parser.parse_args()
assert len(args.inputs) == len(args.outputs), \
"number of input and output paths should match"
with contextlib.ExitStack() as stack:
inputs = [
stack.enter_context(open(input, "r", encoding="utf-8", errors='ignore'))
if input != "-" else sys.stdin
for input in args.inputs
]
outputs = [
stack.enter_context(open(output, "w", encoding="utf-8"))
if output != "-" else sys.stdout
for output in args.outputs
]
encoder = MultiprocessingEncoder(args)
pool = Pool(args.workers, initializer=encoder.initializer)
encoded_lines = pool.imap(encoder.encode_lines, zip(*inputs), 100)
stats = Counter()
for i, (filt, enc_lines) in enumerate(encoded_lines, start=1):
if filt == "PASS":
for enc_line, output_h in zip(enc_lines, outputs):
print(enc_line, file=output_h)
else:
stats["num_filtered_" + filt] += 1
if i % 10000 == 0:
print("processed {} lines".format(i), file=sys.stderr)
for k, v in stats.most_common():
print("[{}] filtered {} lines".format(k, v), file=sys.stderr)
class MultiprocessingEncoder(object):
def __init__(self, args):
self.args = args
def initializer(self):
global bpe
bpe = BertTokenizer.from_pretrained('pretrained_model/bert_uncased_base_vocab.txt')
def encode(self, line):
global bpe
subword = bpe.tokenize(line)
return subword
def decode(self, tokens):
global bpe
return bpe.decode(tokens)
def encode_lines(self, lines):
"""
Encode a set of lines. All lines will be encoded together.
"""
enc_lines = []
for line in lines:
line = line.strip()
if len(line) == 0 and not self.args.keep_empty:
return ["EMPTY", None]
if self.args.tokenizer == 'bpe':
tokens = self.encode(line)
enc_lines.append(" ".join(tokens))
else:
enc_lines.append(text_to_words(line))
return ["PASS", enc_lines]
def decode_lines(self, lines):
dec_lines = []
for line in lines:
tokens = map(int, line.strip().split())
dec_lines.append(self.decode(tokens))
return ["PASS", dec_lines]
if __name__ == "__main__":
main()