-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathbenchmark-tf.py
65 lines (52 loc) · 2.54 KB
/
benchmark-tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import pandas as pd
import os
from tempocnn.classifier import TempoClassifier
from tempocnn.feature import read_features
import time
import tensorflow as tf
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
def estimate_tempo_cnn(audio_path, model):
features = read_features(audio_path)
bpm = model.estimate_tempo(features, interpolate=False)
print(bpm)
return bpm
def is_within_tolerance(predicted_bpm, true_bpm, tolerance=0.02, multiples=[1]):
for multiple in multiples:
if true_bpm * multiple * (1 - tolerance) <= predicted_bpm <= true_bpm * multiple * (1 + tolerance):
return True
return False
def run_benchmark(test_set, estimation_methods):
results = {method: {'times': [], 'accuracy1': [], 'accuracy2':[]} for method in estimation_methods}
for method_name, method_func in estimation_methods.items():
for _, row in test_set.iterrows():
true_bpm = row['bpm']
audio_path = os.path.join('/media/bleu/bulkdata2/deeprhythmdata', row['filename'])
start_time = time.time()
predicted_bpm = method_func(audio_path)
elapsed_time = time.time() - start_time
results[method_name]['times'].append(elapsed_time)
correct1 = is_within_tolerance(predicted_bpm, true_bpm)
results[method_name]['accuracy1'].append(correct1)
correct2 = is_within_tolerance(predicted_bpm, true_bpm, multiples=[0.5, 1, 2, 3])
results[method_name]['accuracy2'].append(correct2)
return results
def generate_report(results):
for method, metrics in results.items():
accuracy1 = sum(metrics['accuracy1']) / len(metrics['accuracy1']) * 100
accuracy2 = sum(metrics['accuracy2']) / len(metrics['accuracy2']) * 100
avg_time = sum(metrics['times']) / len(metrics['times'])
print('-----'*20)
print(f"{method:<18}: Acc1 = {accuracy1:.2f}%, Acc2 = {accuracy2:.2f}%, Avg Time = {avg_time:.4f}s, Total={sum(metrics['times']):.2f}s")
if __name__ == '__main__':
test_set = pd.read_csv('/media/bleu/bulkdata2/deeprhythmdata/test.csv')
fcn_model = TempoClassifier('fcn')
cnn_model = TempoClassifier('cnn')
# Define the estimation methods
methods = {
'TempoCNN (cnn)': lambda audio_path: estimate_tempo_cnn(audio_path, cnn_model),
'TempoCNN (fcn)': lambda audio_path: estimate_tempo_cnn(audio_path, fcn_model),
}
# Run the benchmark
results = run_benchmark(test_set, methods)
# Generate the report
generate_report(results)