-
Notifications
You must be signed in to change notification settings - Fork 1
/
cifar_main.py
532 lines (446 loc) · 21.2 KB
/
cifar_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import argparse
import builtins
import math
import os
import random
import shutil
import time
import warnings
import sys
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
from torch.utils.tensorboard import SummaryWriter
import torchvision.transforms as transforms
import torchvision.models as models
import torch.nn.functional as F
from models import resnet_cifar
from autoaug import CIFAR10Policy, Cutout
import moco.loader
import moco.builder
from dataset.imbalance_cifar import ImbalanceCIFAR100, ImbalanceCIFAR10
import torchvision.datasets as datasets
from losses import GMLLoss
from utils import shot_acc
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
model_names += ['resnext101_32x4d']
model_names += ['resnet20', 'resnet32', 'resnet44', 'resnet56', 'resnet110']
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='cifar100', choices=['inat', 'imagenet', 'cifar100', 'cifar10'])
parser.add_argument('--data', metavar='DIR', default='./data')
parser.add_argument('--root_path', type=str, default='./outputs')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet32',
choices=model_names,
help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet32)')
parser.add_argument('-j', '--workers', default=32, type=int, metavar='N',
help='number of data loading workers (default: 32)')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--imb-factor', type=float,
metavar='IF', help='imbalanced factor', dest='imb_factor')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--schedule', default=[160, 180], nargs='*', type=int,
help='learning rate schedule (when to drop lr by 10x)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum of SGD solver')
parser.add_argument('--wd', '--weight-decay', default=5e-4, type=float,
metavar='W', help='weight decay (default: 5e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=50, type=int,
metavar='N', help='print frequency (default: 50)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=0, type=int,
help='GPU id to use.')
parser.add_argument('--arch_t', default='resnet32',
choices=model_names,
help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet32)')
parser.add_argument('--path_t', default=None, type=str, help='path to teacher model')
parser.add_argument('--feat_t', default=None, type=int,
help='last feature dim of teacher')
# moco specific configs:
parser.add_argument('--moco-dim', default=32, type=int,
help='feature dimension (default: 128)')
parser.add_argument('--moco-k', default=4096, type=int,
help='queue size; number of negative keys (default: 1024)')
parser.add_argument('--base_k', default=2, type=int,
help='minimum number of contrast for each class')
parser.add_argument('--moco-m', default=0.999, type=float,
help='moco momentum of updating key encoder (default: 0.999)')
parser.add_argument('--moco-t', default=0.1, type=float,
help='softmax temperature (default: 0.1)')
# options for moco v2
parser.add_argument('--mlp', default=True, type=str2bool,
help='use mlp head')
parser.add_argument('--aug-plus', default=True, type=str2bool,
help='use moco v2 data augmentation')
parser.add_argument('--normalize', default=True, type=str2bool,
help='use cosine classifier')
# options for paco
parser.add_argument('--mark', default=None, type=str,
help='log dir')
parser.add_argument('--reload', default=None, type=str,
help='load supervised model')
parser.add_argument('--warmup_epochs', default=5, type=int,
help='warmup epochs')
parser.add_argument('--alpha', default=1.0, type=float,
help='weight for kl_div loss (default: 1.0)')
parser.add_argument('--beta', default=1.0, type=float,
help='weight for contrast loss (default: 1.0)')
parser.add_argument('--gamma', default=1.0, type=float,
help='weight for cross-entropy loss (default: 1.0)')
parser.add_argument('--aug', default='cifar100', type=str,
help='aug strategy')
parser.add_argument('--num_classes', default=100, type=int,
help='num classes in dataset')
parser.add_argument('--feat_dim', default=64, type=int,
help='last feature dim of backbone')
parser.add_argument('--epoch-multiplier', default=1, type=int,
help='multiply epoch by times')
def main():
args = parser.parse_args()
args.epochs *= args.epoch_multiplier
args.warmup_epochs *= args.epoch_multiplier
args.root_model = f'{args.root_path}/{args.dataset}/{args.mark}'
os.makedirs(args.root_model, exist_ok=True)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
main_worker(args.gpu, 1, args)
def main_worker(gpu, ngpus_per_node, args):
args.gpu = gpu
def print_pass(*args):
tqdm.write(' '.join([str(v) for v in args]), file=sys.stdout)
builtins.print = print_pass
args.is_master = True
tb_logger = SummaryWriter(os.path.join(args.root_model, 'tb_logs'), flush_secs=2)
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
torch.cuda.set_device(args.gpu)
# create model
print("=> creating model '{}'".format(args.arch))
model = moco.builder.MoCo(
getattr(resnet_cifar, args.arch),
args.moco_dim, args.moco_k, args.moco_m, args.mlp,
args.feat_dim, args.feat_t, args.normalize, args.num_classes)
print(model)
if args.path_t is not None:
try:
encoder_k = getattr(resnet_cifar, args.arch_t)(num_classes=args.num_classes, use_norm=False, return_features=True)
encoder_k.load_state_dict(torch.load(args.path_t)['state_dict'])
except RuntimeError:
encoder_k = getattr(resnet_cifar, args.arch_t)(num_classes=args.num_classes, use_norm=True, return_features=True)
encoder_k.load_state_dict(torch.load(args.path_t)['state_dict'])
model.set_distiller(encoder_k)
model = model.cuda(args.gpu)
# define loss function (criterion) and optimizer
criterion_ce = nn.CrossEntropyLoss().cuda(args.gpu)
criterion = GMLLoss(args.beta, args.gamma, args.moco_t, args.num_classes, args.alpha).cuda(args.gpu)
def get_wd_params(model: nn.Module):
all_params = tuple(model.parameters())
no_wd_params = list()
for n, p in model.named_parameters():
if '__no_wd__' in n:
no_wd_params.append(p)
# Only weights of specific layers should undergo weight decay.
wd_params = []
for p in all_params:
matched = False
for nwp in no_wd_params:
if p is nwp:
matched = True
break
if not matched:
wd_params.append(p)
assert len(wd_params) + len(no_wd_params) == len(all_params), "Sanity check failed."
return wd_params, no_wd_params
wd_params, no_wd_params = get_wd_params(nn.ModuleList([model, criterion]))
optimizer = torch.optim.SGD(wd_params, args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
if len(no_wd_params) > 0:
optimizer_no_wd = torch.optim.SGD(no_wd_params, args.lr,
momentum=args.momentum,
weight_decay=0.0)
[optimizer.add_param_group(pg) for pg in optimizer_no_wd.param_groups]
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
augmentation_regular = [
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
CIFAR10Policy(), # add AutoAug
transforms.ToTensor(),
Cutout(n_holes=1, length=16),
transforms.Normalize(
(0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
]
val_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
CIFAR = datasets.CIFAR100 \
if args.dataset == 'cifar100' else datasets.CIFAR10
val_dataset = CIFAR(
root='./cifar',
train=False,
download=True,
transform=val_transform)
transform_train = [
transforms.Compose(augmentation_regular),
transforms.Compose(augmentation_regular),
transforms.Compose(augmentation_regular),
]
ImbalanceCIFAR = ImbalanceCIFAR100 \
if args.dataset == 'cifar100' else ImbalanceCIFAR10
train_dataset = ImbalanceCIFAR(root='./cifar', imb_type='exp', imb_factor=args.imb_factor, rand_number=0,
train=True, download=True, transform=transform_train)
print(transform_train)
print(f'===> Training data length {len(train_dataset)}')
criterion.cal_weight_for_classes(train_dataset.get_cls_num_list())
if args.base_k > 0:
model.set_cls_weight(criterion.cls_weight, args.base_k)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, drop_last=True,
persistent_workers=True)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True, persistent_workers=True)
if args.evaluate:
print(" start evaluation **** ")
validate(val_loader, train_loader, model, criterion_ce, tb_logger, 0, args)
return
best_acc1 = 0
for epoch in tqdm(range(args.start_epoch, args.epochs), position=0, leave=True, disable=not args.is_master):
adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
train(train_loader, model, criterion, optimizer, tb_logger, epoch, args)
acc1 = validate(val_loader, train_loader, model, criterion_ce, tb_logger, epoch, args)
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
output_cur = 'Current Prec@1: %.3f\n' % (acc1)
output_best = 'Best Prec@1: %.3f\n' % (best_acc1)
print(output_cur, output_best)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, is_best=False, filename=f'{args.root_model}/moco_ckpt.pth.tar')
if (epoch + 1) % args.print_freq == 0:
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, is_best=False, filename=f'{args.root_model}/moco_ckpt_{(epoch+1):04d}.pth.tar')
def train(train_loader, model, criterion, optimizer, tb_logger, epoch, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4f')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
total_logits = torch.empty((0, args.num_classes)).cuda()
total_labels = torch.empty(0, dtype=torch.long).cuda()
end = time.time()
for i, (images, target, in_idx) in enumerate(tqdm(train_loader, position=1, leave=False, disable=not args.is_master)):
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
images = [img.cuda(args.gpu, non_blocking=True) for img in images]
target = target.cuda(args.gpu, non_blocking=True)
in_idx = in_idx.cuda(args.gpu, non_blocking=True)
# compute output
query, key, k_labels, k_idx, logits, t_logits = model(*images, target, in_idx)
loss = criterion(query, target, in_idx, key, k_labels, k_idx, logits, t_logits)
total_logits = torch.cat((total_logits, logits))
total_labels = torch.cat((total_labels, target))
acc1, acc5 = accuracy(logits, target, topk=(1, 5))
losses.update(loss.item(), logits.size(0))
top1.update(acc1[0], logits.size(0))
top5.update(acc5[0], logits.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i, args)
global_step = epoch * len(train_loader) + i
if tb_logger is not None:
tb_logger.add_scalar('Train/losses', losses.avg, global_step)
tb_logger.add_scalar('Train/top1', top1.avg, global_step)
tb_logger.add_scalar('Train/top5', top5.avg, global_step)
def validate(val_loader, train_loader, model, criterion, tb_logger, epoch, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4f')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
model.eval()
total_logits = torch.empty((0, args.num_classes)).cuda()
total_labels = torch.empty(0, dtype=torch.long).cuda()
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(tqdm(val_loader, position=1, leave=False, disable=not args.is_master)):
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
if torch.cuda.is_available():
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
total_logits = torch.cat((total_logits, output))
total_labels = torch.cat((total_labels, target))
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i, args)
# TODO: this should also be done with the ProgressMeter
open(args.root_model+"/"+args.mark+".log","a+").write(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}\n'
.format(top1=top1, top5=top5))
print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}\n'.format(top1=top1, top5=top5))
probs, preds = F.softmax(total_logits.detach(), dim=1).max(dim=1)
many_acc_top1, median_acc_top1, low_acc_top1, cls_accs = shot_acc(preds, total_labels, train_loader, acc_per_cls=True)
if tb_logger is not None:
tb_logger.add_scalar('Validation/Acc@1', top1.avg, epoch)
tb_logger.add_scalar('Validation/Acc@5', top5.avg, epoch)
tb_logger.add_scalar('Validation/Many_acc', many_acc_top1, epoch)
tb_logger.add_scalar('Validation/Medium_acc', median_acc_top1, epoch)
tb_logger.add_scalar('Validation/Low_acc', low_acc_top1, epoch)
return top1.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, filename.replace('pth.tar', 'best.pth.tar'))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch, args):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
open(args.root_model+"/"+args.mark+".log","a+").write('\t'.join(entries)+"\n")
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
if epoch <= args.warmup_epochs:
lr = args.lr / args.warmup_epochs * (epoch + 1)
elif epoch > args.schedule[1] * args.epoch_multiplier:
lr = args.lr * 0.01
elif epoch > args.schedule[0] * args.epoch_multiplier:
lr = args.lr * 0.1
else:
lr = args.lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred)).contiguous()
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()