-
Notifications
You must be signed in to change notification settings - Fork 100
/
montfp.c
600 lines (538 loc) · 14.6 KB
/
montfp.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
// F_p using Montgomery representation.
//
// Let b = 256^sizeof(mp_limb_t).
// Let R = b^t be the smallest power of b greater than the modulus p.
// Then x is stored as xR (mod p).
// Addition: same as naive implementation.
// Multipication: Montgomery reduction.
// Code assumes the modulus p is odd.
//
// TODO: mul_2exp(x, p->bytes * 8) could be replaced with
// faster code that messes with GMP internals
#include <stdarg.h>
#include <stdio.h>
#include <stdint.h> // for intptr_t
#include <stdlib.h>
#include <string.h>
#include <gmp.h>
#include "pbc_utils.h"
#include "pbc_field.h"
#include "pbc_random.h"
#include "pbc_fp.h"
#include "pbc_memory.h"
// Per-field data.
typedef struct {
size_t limbs; // Number of limbs per element.
size_t bytes; // Number of bytes per element.
mp_limb_t *primelimbs; // Points to an array of limbs holding the modulus.
mp_limb_t negpinv; // -p^-1 mod b
mp_limb_t *R; // R mod p
mp_limb_t *R3; // R^3 mod p
} *fptr;
// Per-element data.
typedef struct {
char flag; // flag == 0 means the element is zero.
mp_limb_t *d; // Otherwise d points to an array holding the element.
} *eptr;
// Copies limbs of z into dst and zeroes any leading limbs, where n is the
// total number of limbs.
// Requires z to have at most n limbs.
static inline void set_limbs(mp_limb_t *dst, mpz_t z, size_t n) {
size_t count;
mpz_export(dst, &count, -1, sizeof(mp_limb_t), 0, 0, z);
memset((void *) (((unsigned char *) dst) + count * sizeof(mp_limb_t)),
0, (n - count) * sizeof(mp_limb_t));
}
static void fp_init(element_ptr e) {
fptr p = e->field->data;
eptr ep = e->data = pbc_malloc(sizeof(*ep));
ep->flag = 0;
ep->d = pbc_malloc(p->bytes);
}
static void fp_clear(element_ptr e) {
eptr ep = e->data;
pbc_free(ep->d);
pbc_free(e->data);
}
static void fp_set_mpz(element_ptr e, mpz_ptr z) {
fptr p = e->field->data;
eptr ep = e->data;
if (!mpz_sgn(z)) ep->flag = 0;
else {
mpz_t tmp;
mpz_init(tmp);
mpz_mul_2exp(tmp, z, p->bytes * 8);
mpz_mod(tmp, tmp, e->field->order);
if (!mpz_sgn(tmp)) ep->flag = 0;
else {
set_limbs(ep->d, tmp, p->limbs);
ep->flag = 2;
}
mpz_clear(tmp);
}
}
static void fp_set_si(element_ptr e, signed long int op) {
fptr p = e->field->data;
eptr ep = e->data;
if (!op) ep->flag = 0;
else {
mpz_t tmp;
mpz_init(tmp);
// TODO: Could be optimized.
mpz_set_si(tmp, op);
mpz_mul_2exp(tmp, tmp, p->bytes * 8);
mpz_mod(tmp, tmp, e->field->order);
if (!mpz_sgn(tmp)) ep->flag = 0;
else {
set_limbs(ep->d, tmp, p->limbs);
ep->flag = 2;
}
mpz_clear(tmp);
}
}
// Montgomery reduction.
// Algorithm II.4 from Blake, Seroussi and Smart.
static void mont_reduce(mp_limb_t *x, mp_limb_t *y, fptr p) {
size_t t = p->limbs;
size_t i;
mp_limb_t flag = 0;
for (i = 0; i < t; i++) {
mp_limb_t u = y[i] * p->negpinv;
mp_limb_t carry = mpn_addmul_1(&y[i], p->primelimbs, t, u);
//mpn_add_1(&y[i+t], &y[i+t], t - i + 1, carry);
flag += mpn_add_1(&y[i + t], &y[i + t], t - i, carry);
}
if (flag || mpn_cmp(&y[t], p->primelimbs, t) >= 0) {
mpn_sub_n(x, &y[t], p->primelimbs, t);
} else {
// TODO: GMP set might be faster.
memcpy(x, &y[t], t * sizeof(mp_limb_t));
}
}
static void fp_to_mpz(mpz_ptr z, element_ptr e) {
eptr ep = e->data;
if (!ep->flag) mpz_set_ui(z, 0);
else {
// x is stored as xR.
// We must divide out R to convert to standard representation.
fptr p = e->field->data;
mp_limb_t* tmp = pbc_malloc(2 * p->limbs * sizeof(mp_limb_t));
memcpy(tmp, ep->d, p->limbs * sizeof(mp_limb_t));
memset(&tmp[p->limbs], 0, p->limbs * sizeof(mp_limb_t));
_mpz_realloc(z, p->limbs);
mont_reduce(z->_mp_d, tmp, p);
pbc_free(tmp);
// Remove leading zero limbs.
for (z->_mp_size = (int)p->limbs; !z->_mp_d[z->_mp_size - 1]; z->_mp_size--);
}
}
static void fp_set0(element_ptr e) {
eptr ep = e->data;
ep->flag = 0;
}
static void fp_set1(element_ptr e) {
fptr p = e->field->data;
eptr ep = e->data;
ep->flag = 2;
memcpy(ep->d, p->R, p->bytes);
}
static int fp_is1(element_ptr e) {
eptr ep = e->data;
if (!ep->flag) return 0;
else {
fptr p = e->field->data;
return !mpn_cmp(ep->d, p->R, p->limbs);
}
}
static int fp_is0(element_ptr e) {
eptr ep = e->data;
return !ep->flag;
}
static size_t fp_out_str(FILE * stream, int base, element_ptr e) {
size_t result;
mpz_t z;
mpz_init(z);
fp_to_mpz(z, e);
result = mpz_out_str(stream, base, z);
mpz_clear(z);
return result;
}
static int fp_snprint(char *s, size_t n, element_ptr e) {
int result;
mpz_t z;
mpz_init(z);
fp_to_mpz(z, e);
result = gmp_snprintf(s, n, "%Zd", z);
mpz_clear(z);
return result;
}
static int fp_set_str(element_ptr e, const char *s, int base) {
mpz_t z;
mpz_init(z);
int result = pbc_mpz_set_str(z, s, base);
mpz_mod(z, z, e->field->order);
fp_set_mpz(e, z);
mpz_clear(z);
return result;
}
static void fp_set(element_ptr c, element_ptr a) {
eptr ad = a->data;
eptr cd = c->data;
if (a == c) return;
if (!ad->flag) cd->flag = 0;
else {
fptr p = a->field->data;
// Assembly is faster, but I don't want to stoop to that level.
// Instead of memcpy(), we rewrite so GMP assembly ends up being invoked.
/*
memcpy(cd->d, ad->d, p->bytes);
*/
mpz_t z1, z2;
z1->_mp_d = cd->d;
z2->_mp_d = ad->d;
z1->_mp_size = z1->_mp_alloc = z2->_mp_size = z2->_mp_alloc = (int)p->limbs;
mpz_set(z1, z2);
cd->flag = 2;
}
}
static void fp_add(element_ptr c, element_ptr a, element_ptr b) {
eptr ad = a->data, bd = b->data;
if (!ad->flag) {
fp_set(c, b);
} else if (!bd->flag) {
fp_set(c, a);
} else {
eptr cd = c->data;
fptr p = a->field->data;
const size_t t = p->limbs;
mp_limb_t carry;
carry = mpn_add_n(cd->d, ad->d, bd->d, t);
if (carry) {
// Assumes result of following sub is not zero,
// i.e. modulus cannot be 2^(n * bits_per_limb).
mpn_sub_n(cd->d, cd->d, p->primelimbs, t);
cd->flag = 2;
} else {
int i = mpn_cmp(cd->d, p->primelimbs, t);
if (!i) {
cd->flag = 0;
} else {
cd->flag = 2;
if (i > 0) {
mpn_sub_n(cd->d, cd->d, p->primelimbs, t);
}
}
}
}
}
static void fp_double(element_ptr c, element_ptr a) {
eptr ad = a->data, cd = c->data;
if (!ad->flag) {
cd->flag = 0;
} else {
fptr p = c->field->data;
const size_t t = p->limbs;
if (mpn_lshift(cd->d, ad->d, t, 1)) {
cd->flag = 2;
// Again, assumes result is not zero.
mpn_sub_n(cd->d, cd->d, p->primelimbs, t);
} else {
int i = mpn_cmp(cd->d, p->primelimbs, t);
if (!i) {
cd->flag = 0;
} else {
cd->flag = 2;
if (i > 0) {
mpn_sub_n(cd->d, cd->d, p->primelimbs, t);
}
}
}
}
}
static void fp_halve(element_ptr c, element_ptr a) {
eptr ad = a->data, cd = c->data;
if (!ad->flag) {
cd->flag = 0;
} else {
fptr p = c->field->data;
const size_t t = p->limbs;
mp_limb_t carry = 0;
mp_limb_t *alimb = ad->d;
mp_limb_t *climb = cd->d;
if (alimb[0] & 1) {
carry = mpn_add_n(climb, alimb, p->primelimbs, t);
} else fp_set(c, a);
mpn_rshift(climb, climb, t, 1);
if (carry) climb[t - 1] |= ((mp_limb_t) 1) << (sizeof(mp_limb_t) * 8 - 1);
}
}
static void fp_neg(element_ptr c, element_ptr a) {
eptr ad = a->data, cd = c->data;
if (!ad->flag) cd->flag = 0;
else {
fptr p = a->field->data;
mpn_sub_n(cd->d, p->primelimbs, ad->d, p->limbs);
cd->flag = 2;
}
}
static void fp_sub(element_ptr c, element_ptr a, element_ptr b) {
eptr ad = a->data, bd = b->data;
if (!ad->flag) {
fp_neg(c, b);
} else if (!bd->flag) {
fp_set(c, a);
} else {
fptr p = c->field->data;
size_t t = p->limbs;
eptr cd = c->data;
int i = mpn_cmp(ad->d, bd->d, t);
if (i == 0) {
cd->flag = 0;
} else {
cd->flag = 2;
mpn_sub_n(cd->d, ad->d, bd->d, t);
if (i < 0) {
mpn_add_n(cd->d, cd->d, p->primelimbs, t);
}
}
}
}
// Montgomery multiplication.
// See Blake, Seroussi and Smart.
static inline void mont_mul(mp_limb_t *c, mp_limb_t *a, mp_limb_t *b,
fptr p) {
// Instead of right shifting every iteration
// I allocate more room for the z array.
size_t i, t = p->limbs;
mp_limb_t* z = pbc_malloc((2 * t + 1) * sizeof(mp_limb_t));
mp_limb_t u = (a[0] * b[0]) * p->negpinv;
mp_limb_t v = z[t] = mpn_mul_1(z, b, t, a[0]);
z[t] += mpn_addmul_1(z, p->primelimbs, t, u);
z[t + 1] = z[t] < v; // Handle overflow.
for (i = 1; i < t; i++) {
u = (z[i] + a[i] * b[0]) * p->negpinv;
v = z[t + i] += mpn_addmul_1(z + i, b, t, a[i]);
z[t + i] += mpn_addmul_1(z + i, p->primelimbs, t, u);
z[t + i + 1] = z[t + i] < v;
}
if (z[t * 2] || mpn_cmp(z + t, p->primelimbs, t) >= 0) {
mpn_sub_n(c, z + t, p->primelimbs, t);
} else {
memcpy(c, z + t, t * sizeof(mp_limb_t));
// Doesn't seem to make a difference:
/*
mpz_t z1, z2;
z1->_mp_d = c;
z2->_mp_d = z + t;
z1->_mp_size = z1->_mp_alloc = z2->_mp_size = z2->_mp_alloc = t;
mpz_set(z1, z2);
*/
}
pbc_free(z);
}
static void fp_mul(element_ptr c, element_ptr a, element_ptr b) {
eptr ad = a->data, bd = b->data;
eptr cd = c->data;
if (!ad->flag || !bd->flag) {
cd->flag = 0;
} else {
fptr p = c->field->data;
mont_mul(cd->d, ad->d, bd->d, p);
cd->flag = 2;
}
}
static void fp_pow_mpz(element_ptr c, element_ptr a, mpz_ptr op) {
// Alternative: rewrite GMP mpz_powm().
fptr p = a->field->data;
eptr ad = a->data;
eptr cd = c->data;
if (!ad->flag) cd->flag = 0;
else {
mpz_t z;
mpz_init(z);
fp_to_mpz(z, a);
mpz_powm(z, z, op, a->field->order);
mpz_mul_2exp(z, z, p->bytes * 8);
mpz_mod(z, z, a->field->order);
set_limbs(cd->d, z, p->limbs);
mpz_clear(z);
cd->flag = 2;
}
}
// Inversion is slower than in a naive Fp implementation because of an extra
// multiplication.
// Requires nonzero a.
static void fp_invert(element_ptr c, element_ptr a) {
eptr ad = a->data;
eptr cd = c->data;
fptr p = a->field->data;
mp_limb_t* tmp = pbc_malloc(p->limbs * sizeof(mp_limb_t));
mpz_t z;
mpz_init(z);
// Copy the limbs into a regular mpz_t so we can invert using the standard
// mpz_invert().
mpz_import(z, p->limbs, -1, sizeof(mp_limb_t), 0, 0, ad->d);
mpz_invert(z, z, a->field->order);
set_limbs(tmp, z, p->limbs);
// Normalize.
mont_mul(cd->d, tmp, p->R3, p);
cd->flag = 2;
mpz_clear(z);
pbc_free(tmp);
}
static void fp_random(element_ptr a) {
fptr p = a->field->data;
eptr ad = a->data;
mpz_t z;
mpz_init(z);
pbc_mpz_random(z, a->field->order);
if (mpz_sgn(z)) {
mpz_mul_2exp(z, z, p->bytes * 8);
mpz_mod(z, z, a->field->order);
set_limbs(ad->d, z, p->limbs);
ad->flag = 2;
} else {
ad->flag = 0;
}
mpz_clear(z);
}
static void fp_from_hash(element_ptr a, const void *data, int len) {
mpz_t z;
mpz_init(z);
pbc_mpz_from_hash(z, a->field->order, data, len);
fp_set_mpz(a, z);
mpz_clear(z);
}
static int fp_cmp(element_ptr a, element_ptr b) {
eptr ad = a->data, bd = b->data;
if (!ad->flag) return bd->flag;
else {
fptr p = a->field->data;
return mpn_cmp(ad->d, bd->d, p->limbs);
//return memcmp(ad->d, bd->d, p->limbs);
}
}
static int fp_sgn_odd(element_ptr a) {
eptr ad = a->data;
if (!ad->flag) return 0;
else {
mpz_t z;
mpz_init(z);
int res;
fp_to_mpz(z, a);
res = mpz_odd_p(z) ? 1 : -1;
mpz_clear(z);
return res;
}
}
static int fp_is_sqr(element_ptr a) {
eptr ad = a->data;
int res;
mpz_t z;
mpz_init(z);
// 0 is a square.
if (!ad->flag) return 1;
fp_to_mpz(z, a);
res = mpz_legendre(z, a->field->order) == 1;
mpz_clear(z);
return res;
}
static int fp_to_bytes(unsigned char *data, element_t a) {
mpz_t z;
int n = a->field->fixed_length_in_bytes;
mpz_init(z);
fp_to_mpz(z, a);
pbc_mpz_out_raw_n(data, n, z);
mpz_clear(z);
return n;
}
static int fp_from_bytes(element_t a, const unsigned char *data) {
fptr p = a->field->data;
eptr ad = a->data;
int n;
mpz_t z;
mpz_init(z);
n = a->field->fixed_length_in_bytes;
mpz_import(z, n, 1, 1, 1, 0, data);
if (!mpz_sgn(z)) ad->flag = 0;
else {
ad->flag = 2;
mpz_mul_2exp(z, z, p->bytes * 8);
mpz_mod(z, z, a->field->order);
set_limbs(ad->d, z, p->limbs);
}
mpz_clear(z);
return n;
}
static void fp_field_clear(field_t f) {
fptr p = f->data;
pbc_free(p->primelimbs);
pbc_free(p->R);
pbc_free(p->R3);
pbc_free(p);
}
// The only public functions. All the above should be static.
static void fp_out_info(FILE * out, field_ptr f) {
element_fprintf(out, "GF(%Zd): Montgomery representation", f->order);
}
void field_init_mont_fp(field_ptr f, mpz_t prime) {
PBC_ASSERT(!mpz_fits_ulong_p(prime), "modulus too small");
fptr p;
field_init(f);
f->init = fp_init;
f->clear = fp_clear;
f->set_si = fp_set_si;
f->set_mpz = fp_set_mpz;
f->out_str = fp_out_str;
f->snprint = fp_snprint;
f->set_str = fp_set_str;
f->add = fp_add;
f->sub = fp_sub;
f->set = fp_set;
f->mul = fp_mul;
f->doub = fp_double;
f->halve = fp_halve;
f->pow_mpz = fp_pow_mpz;
f->neg = fp_neg;
f->sign = fp_sgn_odd;
f->cmp = fp_cmp;
f->invert = fp_invert;
f->random = fp_random;
f->from_hash = fp_from_hash;
f->is1 = fp_is1;
f->is0 = fp_is0;
f->set0 = fp_set0;
f->set1 = fp_set1;
f->is_sqr = fp_is_sqr;
f->sqrt = element_tonelli;
f->field_clear = fp_field_clear;
f->to_bytes = fp_to_bytes;
f->from_bytes = fp_from_bytes;
f->to_mpz = fp_to_mpz;
f->out_info = fp_out_info;
// Initialize per-field data specific to this implementation.
p = f->data = pbc_malloc(sizeof(*p));
p->limbs = mpz_size(prime);
p->bytes = p->limbs * sizeof(mp_limb_t);
p->primelimbs = pbc_malloc(p->bytes);
mpz_export(p->primelimbs, &p->limbs, -1, sizeof(mp_limb_t), 0, 0, prime);
mpz_set(f->order, prime);
f->fixed_length_in_bytes = (int)((mpz_sizeinbase(prime, 2) + 7) / 8);
// Compute R, R3 and negpinv.
mpz_t z;
mpz_init(z);
p->R = pbc_malloc(p->bytes);
p->R3 = pbc_malloc(p->bytes);
mpz_setbit(z, p->bytes * 8);
mpz_mod(z, z, prime);
set_limbs(p->R, z, p->limbs);
mpz_powm_ui(z, z, 3, prime);
set_limbs(p->R3, z, p->limbs);
mpz_set_ui(z, 0);
// Algorithm II.5 in Blake, Seroussi and Smart is better but this suffices
// since we're only doing it once.
mpz_setbit(z, p->bytes * 8);
mpz_invert(z, prime, z);
p->negpinv = ~((pbc_mpui)0) - (mpz_get_ui(z) - 1);
mpz_clear(z);
}