forked from jcjohnson/neural-style
-
Notifications
You must be signed in to change notification settings - Fork 0
/
neural_style_seg.lua
executable file
·838 lines (752 loc) · 27.2 KB
/
neural_style_seg.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
-- Original mask related code from: https://github.com/martinbenson/deep-photo-styletransfer
-- Modified mask code by github.com/ProGamerGov
require 'torch'
require 'nn'
require 'image'
require 'optim'
require 'loadcaffe'
local cmd = torch.CmdLine()
-- Basic options
cmd:option('-style_image', 'examples/inputs/seated-nude.jpg',
'Style target image')
cmd:option('-style_seg', '',
'Style segmentation image')
cmd:option('-style_blend_weights', 'nil')
cmd:option('-content_image', 'examples/inputs/tubingen.jpg',
'Content target image')
cmd:option('-content_seg', '',
'Style segmentation image')
cmd:option('-image_size', 512, 'Maximum height / width of generated image')
cmd:option('-gpu', '0', 'Zero-indexed ID of the GPU to use; for CPU mode set -gpu = -1')
cmd:option('-multigpu_strategy', '', 'Index of layers to split the network across GPUs')
cmd:option('-color_codes', 'blue,green,black,white,red,yellow,grey,lightblue,purple', 'Colors used in content mask')
-- Optimization options
cmd:option('-content_weight', 5e0)
cmd:option('-style_weight', 1e2)
cmd:option('-tv_weight', 1e-3)
cmd:option('-num_iterations', 1000)
cmd:option('-normalize_gradients', false)
cmd:option('-init', 'random', 'random|image')
cmd:option('-init_image', '')
cmd:option('-optimizer', 'lbfgs', 'lbfgs|adam')
cmd:option('-learning_rate', 1e1)
cmd:option('-lbfgs_num_correction', 0)
-- Output options
cmd:option('-print_iter', 50)
cmd:option('-save_iter', 100)
cmd:option('-output_image', 'out.png')
-- Other options
cmd:option('-style_scale', 1.0)
cmd:option('-original_colors', 0)
cmd:option('-pooling', 'max', 'max|avg')
cmd:option('-proto_file', 'models/VGG_ILSVRC_19_layers_deploy.prototxt')
cmd:option('-model_file', 'models/VGG_ILSVRC_19_layers.caffemodel')
cmd:option('-backend', 'nn', 'nn|cudnn|clnn')
cmd:option('-cudnn_autotune', false)
cmd:option('-seed', -1)
cmd:option('-content_layers', 'relu4_2', 'layers for content')
cmd:option('-style_layers', 'relu1_1,relu2_1,relu3_1,relu4_1,relu5_1', 'layers for style')
local function main(params)
local dtype, multigpu = setup_gpu(params)
local loadcaffe_backend = params.backend
if params.backend == 'clnn' then loadcaffe_backend = 'nn' end
local cnn = loadcaffe.load(params.proto_file, params.model_file, loadcaffe_backend):type(dtype)
local content_image = image.load(params.content_image, 3)
content_image = image.scale(content_image, params.image_size, 'bilinear')
local content_image_caffe = preprocess(content_image):float()
local style_size = math.ceil(params.style_scale * params.image_size)
local style_image_list = params.style_image:split(',')
local style_images_caffe = {}
for _, img_path in ipairs(style_image_list) do
local img = image.load(img_path, 3)
img = image.scale(img, style_size, 'bilinear')
local img_caffe = preprocess(img):float()
table.insert(style_images_caffe, img_caffe)
end
local init_image = nil
if params.init_image ~= '' then
init_image = image.load(params.init_image, 3)
local H, W = content_image:size(2), content_image:size(3)
init_image = image.scale(init_image, W, H, 'bilinear')
init_image = preprocess(init_image):float()
end
-- Handle style blending weights for multiple style inputs
local style_blend_weights = nil
if params.style_blend_weights == 'nil' then
-- Style blending not specified, so use equal weighting
style_blend_weights = {}
for i = 1, #style_image_list do
table.insert(style_blend_weights, 1.0)
end
else
style_blend_weights = params.style_blend_weights:split(',')
assert(#style_blend_weights == #style_image_list,
'-style_blend_weights and -style_images must have the same number of elements')
end
-- Normalize the style blending weights so they sum to 1
local style_blend_sum = 0
for i = 1, #style_blend_weights do
style_blend_weights[i] = tonumber(style_blend_weights[i])
style_blend_sum = style_blend_sum + style_blend_weights[i]
end
for i = 1, #style_blend_weights do
style_blend_weights[i] = style_blend_weights[i] / style_blend_sum
end
local content_layers = params.content_layers:split(",")
local style_layers = params.style_layers:split(",")
-- segmentation images
local style_seg_images_caffe = {}
local color_content_masks, color_style_masks = {}, {}
local color_codes = params.color_codes:split(",")
if params.content_seg and params.style_seg ~= '' then
local content_seg = image.load(params.content_seg, 3)
content_seg = image.scale(content_seg, params.image_size, 'bilinear')
local content_seg_caffe = content_seg:float()
local style_segs = params.style_seg:split(',')
assert(#style_segs == #style_image_list,
'-style_seg and -style_image must have the same number of elements')
for i, img_path in ipairs(style_segs) do
local style_seg = image.load(img_path, 3)
style_seg = image.scale(style_seg, style_size, 'bilinear')
local style_seg_caffe = style_seg:float()
table.insert(style_seg_images_caffe, style_seg_caffe)
end
--local color_content_masks, color_style_masks = {}, {}
for j = 1, #color_codes do
local content_mask_j = ExtractMask(content_seg_caffe, color_codes[j], dtype)
table.insert(color_content_masks, content_mask_j)
end
for i=1, #style_image_list do
tmp_table = {}
for j = 1, #color_codes do
local style_mask_i_j = ExtractMask(style_seg_images_caffe[i], color_codes[j], dtype)
table.insert(tmp_table, style_mask_i_j)
end
table.insert(color_style_masks, tmp_table)
end
end
-- Set up the network, inserting style and content loss modules
local content_losses, style_losses = {}, {}
local next_content_idx, next_style_idx = 1, 1
local net = nn.Sequential()
if params.tv_weight > 0 then
local tv_mod = nn.TVLoss(params.tv_weight):type(dtype)
net:add(tv_mod)
end
for i = 1, #cnn do
if next_content_idx <= #content_layers or next_style_idx <= #style_layers then
local layer = cnn:get(i)
local name = layer.name
local layer_type = torch.type(layer)
local is_pooling = (layer_type == 'cudnn.SpatialMaxPooling' or layer_type == 'nn.SpatialMaxPooling')
local is_conv = (layer_type == 'nn.SpatialConvolution' or layer_type == 'cudnn.SpatialConvolution')
if params.content_seg and params.style_seg ~= '' then
if is_pooling then
local pool_layer
if params.pooling == 'avg' then
assert(layer.padW == 0 and layer.padH == 0)
local kW, kH = layer.kW, layer.kH
local dW, dH = layer.dW, layer.dH
local avg_pool_layer = nn.SpatialAveragePooling(kW, kH, dW, dH):type(dtype)
local msg = 'Replacing max pooling at layer %d with average pooling'
print(string.format(msg, i))
pool_layer=avg_pool_layer
else
pool_layer=layer
end
net:add(pool_layer)
for k = 1, #color_codes do
color_content_masks[k] = image.scale(color_content_masks[k]:float(), math.ceil(color_content_masks[k]:size(2)/2), math.ceil(color_content_masks[k]:size(1)/2)):type(dtype)
end
for j = 1, #style_image_list do
for k = 1, #color_codes do
color_style_masks[j][k] = image.scale(color_style_masks[j][k]:float(), math.ceil(color_style_masks[j][k]:size(2)/2), math.ceil(color_style_masks[j][k]:size(1)/2)):type(dtype)
end
color_style_masks[j] = deepcopy(color_style_masks[j])
end
elseif is_conv then
net:add(layer)
local sap = nn.SpatialAveragePooling(3,3,1,1,1,1):type(dtype)
for k = 1, #color_codes do
color_content_masks[k] = sap:forward(color_content_masks[k]:repeatTensor(1,1,1))[1]:clone()
end
for j = 1, #style_image_list do
for k = 1, #color_style_masks do
color_style_masks[j][k] = sap:forward(color_style_masks[j][k]:repeatTensor(1,1,1))[1]:clone()
end
color_style_masks[j] = deepcopy(color_style_masks[j])
end
else
net:add(layer)
end
color_content_masks = deepcopy(color_content_masks)
elseif is_pooling and params.pooling == 'avg' then
assert(layer.padW == 0 and layer.padH == 0)
local kW, kH = layer.kW, layer.kH
local dW, dH = layer.dW, layer.dH
local avg_pool_layer = nn.SpatialAveragePooling(kW, kH, dW, dH):type(dtype)
local msg = 'Replacing max pooling at layer %d with average pooling'
print(string.format(msg, i))
net:add(avg_pool_layer)
else
net:add(layer)
end
if name == content_layers[next_content_idx] then
print("Setting up content layer", i, ":", layer.name)
local norm = params.normalize_gradients
local loss_module = nn.ContentLoss(params.content_weight, norm):type(dtype)
net:add(loss_module)
table.insert(content_losses, loss_module)
next_content_idx = next_content_idx + 1
end
if name == style_layers[next_style_idx] then
print("Setting up style layer ", i, ":", layer.name)
local norm = params.normalize_gradients
local loss_module
if params.content_seg ~= '' then
loss_module = nn.MaskedStyleLoss(params.style_weight, norm, color_style_masks, color_content_masks, color_codes, name):type(dtype)
else
loss_module = nn.StyleLoss(params.style_weight, norm):type(dtype)
end
net:add(loss_module)
table.insert(style_losses, loss_module)
next_style_idx = next_style_idx + 1
end
end
end
if multigpu then
net = setup_multi_gpu(net, params)
end
net:type(dtype)
-- Capture content targets
for i = 1, #content_losses do
content_losses[i].mode = 'capture'
end
print 'Capturing content targets'
print(net)
content_image_caffe = content_image_caffe:type(dtype)
net:forward(content_image_caffe:type(dtype))
-- Capture style targets
for i = 1, #content_losses do
content_losses[i].mode = 'none'
end
for i = 1, #style_images_caffe do
print(string.format('Capturing style target %d', i))
for j = 1, #style_losses do
style_losses[j].mode = 'capture'
style_losses[j].blend_weight = style_blend_weights[i]
end
net:forward(style_images_caffe[i]:type(dtype))
end
-- Set all loss modules to loss mode
for i = 1, #content_losses do
content_losses[i].mode = 'loss'
end
for i = 1, #style_losses do
style_losses[i].mode = 'loss'
end
-- We don't need the base CNN anymore, so clean it up to save memory.
cnn = nil
for i=1, #net.modules do
local module = net.modules[i]
if torch.type(module) == 'nn.SpatialConvolutionMM' then
-- remove these, not used, but uses gpu memory
module.gradWeight = nil
module.gradBias = nil
end
end
collectgarbage()
if params.style_seg ~= '' then
style_images_caffe=nil
style_seg_images_caffe=nil
end
-- Initialize the image
if params.seed >= 0 then
torch.manualSeed(params.seed)
end
local img = nil
if params.init == 'random' then
img = torch.randn(content_image:size()):float():mul(0.001)
elseif params.init == 'image' then
if init_image then
img = init_image:clone()
else
img = content_image_caffe:clone()
end
else
error('Invalid init type')
end
img = img:type(dtype)
-- Run it through the network once to get the proper size for the gradient
-- All the gradients will come from the extra loss modules, so we just pass
-- zeros into the top of the net on the backward pass.
local y = net:forward(img)
local dy = img.new(#y):zero()
-- Declaring this here lets us access it in maybe_print
local optim_state = nil
if params.optimizer == 'lbfgs' then
optim_state = {
maxIter = params.num_iterations,
verbose=true,
tolX=-1,
tolFun=-1,
}
if params.lbfgs_num_correction > 0 then
optim_state.nCorrection = params.lbfgs_num_correction
end
elseif params.optimizer == 'adam' then
optim_state = {
learningRate = params.learning_rate,
}
else
error(string.format('Unrecognized optimizer "%s"', params.optimizer))
end
local function maybe_print(t, loss)
local verbose = (params.print_iter > 0 and t % params.print_iter == 0)
if verbose then
print(string.format('Iteration %d / %d', t, params.num_iterations))
for i, loss_module in ipairs(content_losses) do
print(string.format(' Content %d loss: %f', i, loss_module.loss))
end
for i, loss_module in ipairs(style_losses) do
print(string.format(' Style %d loss: %f', i, loss_module.loss))
end
print(string.format(' Total loss: %f', loss))
end
end
local function maybe_save(t)
local should_save = params.save_iter > 0 and t % params.save_iter == 0
should_save = should_save or t == params.num_iterations
if should_save then
local disp = deprocess(img:double())
disp = image.minmax{tensor=disp, min=0, max=1}
local filename = build_filename(params.output_image, t)
if t == params.num_iterations then
filename = params.output_image
end
-- Maybe perform postprocessing for color-independent style transfer
if params.original_colors == 1 then
disp = original_colors(content_image, disp)
end
image.save(filename, disp)
end
end
-- Function to evaluate loss and gradient. We run the net forward and
-- backward to get the gradient, and sum up losses from the loss modules.
-- optim.lbfgs internally handles iteration and calls this function many
-- times, so we manually count the number of iterations to handle printing
-- and saving intermediate results.
local num_calls = 0
local function feval(x)
num_calls = num_calls + 1
net:forward(x)
local grad = net:updateGradInput(x, dy)
local loss = 0
for _, mod in ipairs(content_losses) do
loss = loss + mod.loss
end
for _, mod in ipairs(style_losses) do
loss = loss + mod.loss
end
maybe_print(num_calls, loss)
maybe_save(num_calls)
collectgarbage()
-- optim.lbfgs expects a vector for gradients
return loss, grad:view(grad:nElement())
end
-- Run optimization.
if params.optimizer == 'lbfgs' then
print('Running optimization with L-BFGS')
local x, losses = optim.lbfgs(feval, img, optim_state)
elseif params.optimizer == 'adam' then
print('Running optimization with ADAM')
for t = 1, params.num_iterations do
local x, losses = optim.adam(feval, img, optim_state)
end
end
end
function setup_gpu(params)
local multigpu = false
if params.gpu:find(',') then
multigpu = true
params.gpu = params.gpu:split(',')
for i = 1, #params.gpu do
params.gpu[i] = tonumber(params.gpu[i]) + 1
end
else
params.gpu = tonumber(params.gpu) + 1
end
local dtype = 'torch.FloatTensor'
if multigpu or params.gpu > 0 then
if params.backend ~= 'clnn' then
require 'cutorch'
require 'cunn'
if multigpu then
cutorch.setDevice(params.gpu[1])
else
cutorch.setDevice(params.gpu)
end
dtype = 'torch.CudaTensor'
else
require 'clnn'
require 'cltorch'
if multigpu then
cltorch.setDevice(params.gpu[1])
else
cltorch.setDevice(params.gpu)
end
dtype = torch.Tensor():cl():type()
end
else
params.backend = 'nn'
end
if params.backend == 'cudnn' then
require 'cudnn'
if params.cudnn_autotune then
cudnn.benchmark = true
end
cudnn.SpatialConvolution.accGradParameters = nn.SpatialConvolutionMM.accGradParameters -- ie: nop
end
return dtype, multigpu
end
function setup_multi_gpu(net, params)
local DEFAULT_STRATEGIES = {
[2] = {3},
}
local gpu_splits = nil
if params.multigpu_strategy == '' then
-- Use a default strategy
gpu_splits = DEFAULT_STRATEGIES[#params.gpu]
-- Offset the default strategy by one if we are using TV
if params.tv_weight > 0 then
for i = 1, #gpu_splits do gpu_splits[i] = gpu_splits[i] + 1 end
end
else
-- Use the user-specified multigpu strategy
gpu_splits = params.multigpu_strategy:split(',')
for i = 1, #gpu_splits do
gpu_splits[i] = tonumber(gpu_splits[i])
end
end
assert(gpu_splits ~= nil, 'Must specify -multigpu_strategy')
local gpus = params.gpu
local cur_chunk = nn.Sequential()
local chunks = {}
for i = 1, #net do
cur_chunk:add(net:get(i))
if i == gpu_splits[1] then
table.remove(gpu_splits, 1)
table.insert(chunks, cur_chunk)
cur_chunk = nn.Sequential()
end
end
table.insert(chunks, cur_chunk)
assert(#chunks == #gpus)
local new_net = nn.Sequential()
for i = 1, #chunks do
local out_device = nil
if i == #chunks then
out_device = gpus[1]
end
new_net:add(nn.GPU(chunks[i], gpus[i], out_device))
end
return new_net
end
function build_filename(output_image, iteration)
local ext = paths.extname(output_image)
local basename = paths.basename(output_image, ext)
local directory = paths.dirname(output_image)
return string.format('%s/%s_%d.%s',directory, basename, iteration, ext)
end
-- Preprocess an image before passing it to a Caffe model.
-- We need to rescale from [0, 1] to [0, 255], convert from RGB to BGR,
-- and subtract the mean pixel.
function preprocess(img)
local mean_pixel = torch.DoubleTensor({103.939, 116.779, 123.68})
local perm = torch.LongTensor{3, 2, 1}
img = img:index(1, perm):mul(256.0)
mean_pixel = mean_pixel:view(3, 1, 1):expandAs(img)
img:add(-1, mean_pixel)
return img
end
-- Undo the above preprocessing.
function deprocess(img)
local mean_pixel = torch.DoubleTensor({103.939, 116.779, 123.68})
mean_pixel = mean_pixel:view(3, 1, 1):expandAs(img)
img = img + mean_pixel
local perm = torch.LongTensor{3, 2, 1}
img = img:index(1, perm):div(256.0)
return img
end
-- Combine the Y channel of the generated image and the UV channels of the
-- content image to perform color-independent style transfer.
function original_colors(content, generated)
local generated_y = image.rgb2yuv(generated)[{{1, 1}}]
local content_uv = image.rgb2yuv(content)[{{2, 3}}]
return image.yuv2rgb(torch.cat(generated_y, content_uv, 1))
end
-- Define an nn Module to compute content loss in-place
local ContentLoss, parent = torch.class('nn.ContentLoss', 'nn.Module')
function ContentLoss:__init(strength, normalize)
parent.__init(self)
self.strength = strength
self.target = torch.Tensor()
self.normalize = normalize or false
self.loss = 0
self.crit = nn.MSECriterion()
self.mode = 'none'
end
function ContentLoss:updateOutput(input)
if self.mode == 'loss' then
self.loss = self.crit:forward(input, self.target) * self.strength
elseif self.mode == 'capture' then
self.target:resizeAs(input):copy(input)
end
self.output = input
return self.output
end
function ContentLoss:updateGradInput(input, gradOutput)
if self.mode == 'loss' then
if input:nElement() == self.target:nElement() then
self.gradInput = self.crit:backward(input, self.target)
end
if self.normalize then
self.gradInput:div(torch.norm(self.gradInput, 1) + 1e-8)
end
self.gradInput:mul(self.strength)
self.gradInput:add(gradOutput)
else
self.gradInput:resizeAs(gradOutput):copy(gradOutput)
end
return self.gradInput
end
local Gram, parent = torch.class('nn.GramMatrix', 'nn.Module')
function Gram:__init()
parent.__init(self)
end
function Gram:updateOutput(input)
assert(input:dim() == 3)
local C, H, W = input:size(1), input:size(2), input:size(3)
local x_flat = input:view(C, H * W)
self.output:resize(C, C)
self.output:mm(x_flat, x_flat:t())
return self.output
end
function Gram:updateGradInput(input, gradOutput)
assert(input:dim() == 3 and input:size(1))
local C, H, W = input:size(1), input:size(2), input:size(3)
local x_flat = input:view(C, H * W)
self.gradInput:resize(C, H * W):mm(gradOutput, x_flat)
self.gradInput:addmm(gradOutput:t(), x_flat)
self.gradInput = self.gradInput:view(C, H, W)
return self.gradInput
end
-- Define an nn Module to compute style loss in-place
local StyleLoss, parent = torch.class('nn.StyleLoss', 'nn.Module')
function StyleLoss:__init(strength, normalize)
parent.__init(self)
self.normalize = normalize or false
self.strength = strength
self.target = torch.Tensor()
self.mode = 'none'
self.loss = 0
self.gram = nn.GramMatrix()
self.blend_weight = nil
self.G = nil
self.crit = nn.MSECriterion()
end
function StyleLoss:updateOutput(input)
self.G = self.gram:forward(input)
self.G:div(input:nElement())
if self.mode == 'capture' then
if self.blend_weight == nil then
self.target:resizeAs(self.G):copy(self.G)
elseif self.target:nElement() == 0 then
self.target:resizeAs(self.G):copy(self.G):mul(self.blend_weight)
else
self.target:add(self.blend_weight, self.G)
end
elseif self.mode == 'loss' then
self.loss = self.strength * self.crit:forward(self.G, self.target)
end
self.output = input
return self.output
end
function StyleLoss:updateGradInput(input, gradOutput)
if self.mode == 'loss' then
local dG = self.crit:backward(self.G, self.target)
dG:div(input:nElement())
self.gradInput = self.gram:backward(input, dG)
if self.normalize then
self.gradInput:div(torch.norm(self.gradInput, 1) + 1e-8)
end
self.gradInput:mul(self.strength)
self.gradInput:add(gradOutput)
else
self.gradInput = gradOutput
end
return self.gradInput
end
-- Define an nn Module to compute masked style loss in-place
local MaskedStyleLoss, parent = torch.class('nn.MaskedStyleLoss', 'nn.Module')
function MaskedStyleLoss:__init(strength, normalize, color_style_masks, color_content_masks, color_codes)
parent.__init(self)
self.normalize = normalize or false
self.strength = strength
self.target_grams = {}
self.masked_grams = {}
self.masked_features = {}
self.mode = 'none'
self.gram = nn.GramMatrix()
self.blend_weight = nil
self.crit = nn.MSECriterion()
self.color_style_masks = deepcopy(color_style_masks)
self.color_content_masks = deepcopy(color_content_masks)
self.color_codes = color_codes
self.capture_count =1
end
function MaskedStyleLoss:updateOutput(input)
self.loss = 0
local masks
if self.mode == 'capture' then
masks = self.color_style_masks[self.capture_count]
self.capture_count = self.capture_count +1
elseif self.mode == 'loss' then
masks = self.color_content_masks
self.color_style_masks=nil
end
if self.mode ~= 'none' then
for j = 1, #self.color_codes do
local l_mask_ori = masks[j]:clone()
local l_mask = l_mask_ori:repeatTensor(1,1,1):expandAs(input)
local l_mean = l_mask_ori:mean()
local masked_features = torch.cmul(l_mask, input)
local masked_gram = self.gram:forward(masked_features):clone()
if l_mean > 0 then
masked_gram:div(input:nElement() * l_mean)
end
if self.mode == 'capture' then
if j>#self.target_grams then
table.insert(self.target_grams, masked_gram:mul(self.blend_weight))
table.insert(self.masked_grams, self.target_grams[j]:clone())
table.insert(self.masked_features, masked_features)
else
self.target_grams[j]:add(masked_gram:mul(self.blend_weight))
end
elseif self.mode == 'loss' then
self.masked_grams[j]=masked_gram
self.masked_features[j]=masked_features
self.loss = self.loss + self.crit:forward(self.masked_grams[j], self.target_grams[j]) * l_mean * self.strength
end
end
end
self.output = input
return self.output
end
function MaskedStyleLoss:updateGradInput(input, gradOutput)
if self.mode == 'loss' then
self.gradInput = gradOutput:clone()
self.gradInput:zero()
for j = 1, #self.color_codes do
local dG = self.crit:backward(self.masked_grams[j], self.target_grams[j])
dG:div(input:nElement())
local gradient = self.gram:backward(self.masked_features[j], dG)
if self.normalize then
gradient:div(torch.norm(gradient, 1) + 1e-8)
end
self.gradInput:add(gradient)
end
self.gradInput:mul(self.strength)
self.gradInput:add(gradOutput)
else
self.gradInput = gradOutput
end
return self.gradInput
end
local TVLoss, parent = torch.class('nn.TVLoss', 'nn.Module')
function TVLoss:__init(strength)
parent.__init(self)
self.strength = strength
self.x_diff = torch.Tensor()
self.y_diff = torch.Tensor()
end
function TVLoss:updateOutput(input)
self.output = input
return self.output
end
-- TV loss backward pass inspired by kaishengtai/neuralart
function TVLoss:updateGradInput(input, gradOutput)
self.gradInput:resizeAs(input):zero()
local C, H, W = input:size(1), input:size(2), input:size(3)
self.x_diff:resize(3, H - 1, W - 1)
self.y_diff:resize(3, H - 1, W - 1)
self.x_diff:copy(input[{{}, {1, -2}, {1, -2}}])
self.x_diff:add(-1, input[{{}, {1, -2}, {2, -1}}])
self.y_diff:copy(input[{{}, {1, -2}, {1, -2}}])
self.y_diff:add(-1, input[{{}, {2, -1}, {1, -2}}])
self.gradInput[{{}, {1, -2}, {1, -2}}]:add(self.x_diff):add(self.y_diff)
self.gradInput[{{}, {1, -2}, {2, -1}}]:add(-1, self.x_diff)
self.gradInput[{{}, {2, -1}, {1, -2}}]:add(-1, self.y_diff)
self.gradInput:mul(self.strength)
self.gradInput:add(gradOutput)
return self.gradInput
end
function ExtractMask(seg, color, dtype)
local mask = nil
if color == 'green' then
mask = torch.lt(seg[1], 0.1)
mask:cmul(torch.gt(seg[2], 1-0.1))
mask:cmul(torch.lt(seg[3], 0.1))
elseif color == 'black' then
mask = torch.lt(seg[1], 0.1)
mask:cmul(torch.lt(seg[2], 0.1))
mask:cmul(torch.lt(seg[3], 0.1))
elseif color == 'white' then
mask = torch.gt(seg[1], 1-0.1)
mask:cmul(torch.gt(seg[2], 1-0.1))
mask:cmul(torch.gt(seg[3], 1-0.1))
elseif color == 'red' then
mask = torch.gt(seg[1], 1-0.1)
mask:cmul(torch.lt(seg[2], 0.1))
mask:cmul(torch.lt(seg[3], 0.1))
elseif color == 'blue' then
mask = torch.lt(seg[1], 0.1)
mask:cmul(torch.lt(seg[2], 0.1))
mask:cmul(torch.gt(seg[3], 1-0.1))
elseif color == 'yellow' then
mask = torch.gt(seg[1], 1-0.1)
mask:cmul(torch.gt(seg[2], 1-0.1))
mask:cmul(torch.lt(seg[3], 0.1))
elseif color == 'grey' then
mask = torch.cmul(torch.gt(seg[1], 0.5-0.1), torch.lt(seg[1], 0.5+0.1))
mask:cmul(torch.cmul(torch.gt(seg[2], 0.5-0.1), torch.lt(seg[2], 0.5+0.1)))
mask:cmul(torch.cmul(torch.gt(seg[3], 0.5-0.1), torch.lt(seg[3], 0.5+0.1)))
elseif color == 'lightblue' then
mask = torch.lt(seg[1], 0.1)
mask:cmul(torch.gt(seg[2], 1-0.1))
mask:cmul(torch.gt(seg[3], 1-0.1))
elseif color == 'purple' then
mask = torch.gt(seg[1], 1-0.1)
mask:cmul(torch.lt(seg[2], 0.1))
mask:cmul(torch.gt(seg[3], 1-0.1))
else
print('ExtractMask(): color not recognized, color = ', color)
end
return mask:type(dtype)
end
function deepcopy(orig)
local orig_type = type(orig)
local copy
if orig_type == 'table' then
copy = {}
for orig_key, orig_value in next, orig, nil do
copy[deepcopy(orig_key)] = deepcopy(orig_value)
end
setmetatable(copy, deepcopy(getmetatable(orig)))
else -- number, string, boolean, etc
copy = orig
end
return copy
end
local params = cmd:parse(arg)
main(params)