Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Wide-ResNet 28-10-0.3 for CIAFR10 produced a low test accuracy #14

Open
1017137588qqcom opened this issue Feb 24, 2023 · 0 comments
Open

Comments

@1017137588qqcom
Copy link

dear Author,

I downloaded your code and reproduced your experiment on cifar-10 according to your settings, but got 95.24 % test accuracy with cross entropy loss. I am not sure where I have omissions, look forward to your reply!

experimetn settings:
parser.add_argument('--lr', default=0.1, type=float, help='learning_rate')
parser.add_argument('--net_type', default='wide-resnet', type=str, help='model')
parser.add_argument('--depth', default=28, type=int, help='depth of model')
parser.add_argument('--widen_factor', default=10, type=int, help='width of model')
parser.add_argument('--dropout', default=0.3, type=float, help='dropout_rate')

start_epoch = 1
num_epochs = 200
batch_size = 128
optim_type = 'SGD'

mean = {
'cifar10': (0.4914, 0.4822, 0.4465),
'cifar100': (0.5071, 0.4867, 0.4408),
}

std = {
'cifar10': (0.2023, 0.1994, 0.2010),
'cifar100': (0.2675, 0.2565, 0.2761),
}

optimizer = optim.SGD(net.parameters(), lr=cf.learning_rate(args.lr, epoch), momentum=0.9, weight_decay=5e-4)

the result:
image

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant