-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathrun_siamese.py
920 lines (757 loc) · 34.9 KB
/
run_siamese.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner for regression tasks
A large portion of the code is adapted from
https://github.com/zihangdai/xlnet/blob/master/run_classifier.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import os
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
import collections
import csv
import modeling
import optimization
import tokenization
import tensorflow as tf
import random
import numpy as np
from flow.glow_1x1 import AttrDict, Glow
from flow.glow_init_hook import GlowInitHook
import optimization_bert_flow
import json
from siamese_utils import StsbProcessor, SickRProcessor, MnliProcessor, QqpProcessor, \
SnliTrainProcessor, SnliDevTestProcessor, \
Sts_12_16_Processor, MrpcRegressionProcessor, QnliRegressionProcessor, \
file_based_convert_examples_to_features, file_based_input_fn_builder, \
get_input_mask_segment
flags = tf.flags
FLAGS = flags.FLAGS
# model
flags.DEFINE_string("bert_config_file", None,
"The config json file corresponding to the pre-trained BERT model. "
"This specifies the model architecture.")
flags.DEFINE_integer("max_seq_length", 128,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded.")
flags.DEFINE_string("init_checkpoint", None,
"Initial checkpoint (usually from a pre-trained BERT model).")
flags.DEFINE_string("vocab_file", None,
"The vocabulary file that the BERT model was trained on.")
flags.DEFINE_bool("do_lower_case", True,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
# task and data
flags.DEFINE_string("task_name", None, "The name of the task to train.")
flags.DEFINE_string("data_dir", None,
"The input data dir. Should contain the .tsv files (or other data files) "
"for the task.")
flags.DEFINE_float("label_min", 0., None)
flags.DEFINE_float("label_max", 5., None)
# exp
flags.DEFINE_string("output_parent_dir", None, None)
flags.DEFINE_string("exp_name", None, None)
flags.DEFINE_string("exp_name_prefix", None, None)
flags.DEFINE_integer("log_every_step", 10, None)
flags.DEFINE_integer("save_checkpoints_steps", 1000,
"How often to save the model checkpoint.")
flags.DEFINE_bool("use_xla", False, None)
flags.DEFINE_integer("seed", 1234, None)
flags.DEFINE_string("cached_dir", None,
"Path to cached training and dev tfrecord file. "
"The file will be generated if not exist.")
# training
flags.DEFINE_bool("do_train", False, None)
flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.")
flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.")
flags.DEFINE_float("num_train_epochs", 3.0,
"Total number of training epochs to perform.")
flags.DEFINE_float("warmup_proportion", 0.1,
"Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10% of training.")
flags.DEFINE_bool("early_stopping", False, None)
flags.DEFINE_integer("start_delay_secs", 120, "for tf.estimator.EvalSpec")
flags.DEFINE_integer("throttle_secs", 600, "for tf.estimator.EvalSpec")
# eval
flags.DEFINE_bool("do_eval", False, None)
flags.DEFINE_bool("do_predict", False, None)
flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.")
flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predict.")
flags.DEFINE_bool("predict_pool", False, None)
flags.DEFINE_bool("do_predict_on_dev", False, None)
flags.DEFINE_bool("do_predict_on_full", False, None)
flags.DEFINE_string("eval_checkpoint_name", None, "filename of a finetuned checkpoint")
flags.DEFINE_bool("auc", False, None)
# sentence embedding related parameters
flags.DEFINE_string("sentence_embedding_type", "avg", "avg, cls, ...")
# flow parameters
flags.DEFINE_integer("flow", 0, "use flow or not")
flags.DEFINE_integer("flow_loss", 0, "use flow loss or not")
flags.DEFINE_float("flow_learning_rate", 1e-3, "The initial learning rate for Adam.")
flags.DEFINE_string("flow_model_config", "config_l3_d3_w32", None)
# unsupervised or semi-supervised related parameters
flags.DEFINE_integer("num_examples", -1, "# of labeled training examples")
flags.DEFINE_integer("use_full_for_training", 0, None)
flags.DEFINE_integer("dupe_factor", 1, "Number of times to duplicate the input data (with different masks).")
# nli related parameters
# flags.DEFINE_integer("use_snli_full", 0, "augment MNLI training data with SNLI")
flags.DEFINE_float("l2_penalty", -1, "penalize l2 norm of sentence embeddings")
# dimension reduction related parameters
flags.DEFINE_integer("low_dim", -1, "avg pooling over the embedding")
# senteval
flags.DEFINE_bool("do_senteval", False, None)
flags.DEFINE_string("senteval_tasks", "", None)
def get_embedding(bert_config, is_training,
input_ids, input_mask, segment_ids, scope=None):
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
scope=scope)
if FLAGS.sentence_embedding_type == "avg":
sequence = model.get_sequence_output() # [batch_size, seq_length, hidden_size]
input_mask_ = tf.cast(tf.expand_dims(input_mask, axis=-1), dtype=tf.float32)
pooled = tf.reduce_sum(sequence * input_mask_, axis=1) / tf.reduce_sum(input_mask_, axis=1)
elif FLAGS.sentence_embedding_type == "cls":
pooled = model.get_pooled_output()
elif FLAGS.sentence_embedding_type.startswith("avg-last-last-"):
pooled = 0
n_last = int(FLAGS.sentence_embedding_type[-1])
input_mask_ = tf.cast(tf.expand_dims(input_mask, axis=-1), dtype=tf.float32)
sequence = model.all_encoder_layers[-n_last] # [batch_size, seq_length, hidden_size]
pooled += tf.reduce_sum(sequence * input_mask_, axis=1) / tf.reduce_sum(input_mask_, axis=1)
elif FLAGS.sentence_embedding_type.startswith("avg-last-"):
pooled = 0
n_last = int(FLAGS.sentence_embedding_type[-1])
input_mask_ = tf.cast(tf.expand_dims(input_mask, axis=-1), dtype=tf.float32)
for i in range(n_last):
sequence = model.all_encoder_layers[-i] # [batch_size, seq_length, hidden_size]
pooled += tf.reduce_sum(sequence * input_mask_, axis=1) / tf.reduce_sum(input_mask_, axis=1)
pooled /= float(n_last)
elif FLAGS.sentence_embedding_type.startswith("avg-last-concat-"):
pooled = []
n_last = int(FLAGS.sentence_embedding_type[-1])
input_mask_ = tf.cast(tf.expand_dims(input_mask, axis=-1), dtype=tf.float32)
for i in range(n_last):
sequence = model.all_encoder_layers[-i] # [batch_size, seq_length, hidden_size]
pooled += [tf.reduce_sum(sequence * input_mask_, axis=1) / tf.reduce_sum(input_mask_, axis=1)]
pooled = tf.concat(pooled, axis=-1)
else:
raise NotImplementedError
# flow
embedding = None
flow_loss_batch, flow_loss_example = None, None
if FLAGS.flow:
# load model and train config
with open(os.path.join("./flow/config", FLAGS.flow_model_config + ".json"), 'r') as jp:
flow_model_config = AttrDict(json.load(jp))
flow_model_config.is_training = is_training
flow_model = Glow(flow_model_config)
flow_loss_example = flow_model.body(pooled, is_training) # no l2 normalization here any more
flow_loss_batch = tf.math.reduce_mean(flow_loss_example)
embedding = tf.identity(tf.squeeze(flow_model.z, [1, 2])) # no l2 normalization here any more
else:
embedding = pooled
if FLAGS.low_dim > 0:
bsz, org_dim = modeling.get_shape_list(embedding)
embedding = tf.reduce_mean(
tf.reshape(embedding, [bsz, FLAGS.low_dim, org_dim // FLAGS.low_dim]), axis=-1)
return embedding, flow_loss_batch, flow_loss_example
def create_model(bert_config, is_regression,
is_training,
input_ids_a, input_mask_a, segment_ids_a,
input_ids_b, input_mask_b, segment_ids_b,
labels, num_labels):
"""Creates a classification model."""
with tf.variable_scope("bert") as scope:
embedding_a, flow_loss_batch_a, flow_loss_example_a = \
get_embedding(bert_config, is_training,
input_ids_a, input_mask_a, segment_ids_a, scope)
with tf.variable_scope("bert", reuse=tf.AUTO_REUSE) as scope:
embedding_b, flow_loss_batch_b, flow_loss_example_b = \
get_embedding(bert_config, is_training,
input_ids_b, input_mask_b, segment_ids_b, scope)
with tf.variable_scope("loss"):
cos_similarity = tf.reduce_sum(tf.multiply(
tf.nn.l2_normalize(embedding_a, axis=-1),
tf.nn.l2_normalize(embedding_b, axis=-1)), axis=-1)
if is_regression:
# changing cos_similarity into (cos_similarity + 1)/2.0
# leads to large performance decrease in practice
per_example_loss = tf.square(cos_similarity - labels)
loss = tf.reduce_mean(per_example_loss)
logits, predictions = None, None
else:
output_layer = tf.concat([
embedding_a, embedding_b, tf.math.abs(embedding_a - embedding_b)
], axis=-1)
output_size = output_layer.shape[-1].value
output_weights = tf.get_variable(
"output_weights", [num_labels, output_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
probabilities = tf.nn.softmax(logits, axis=-1)
predictions = tf.argmax(probabilities, axis=-1, output_type=tf.int32)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
if FLAGS.num_examples == 0:
per_example_loss = tf.zeros_like(per_example_loss)
loss = tf.zeros_like(loss)
elif FLAGS.num_examples > 0:
per_example_loss = per_example_loss * tf.cast(labels > -1, dtype=tf.float32)
loss = tf.reduce_mean(per_example_loss)
if FLAGS.l2_penalty > 0:
l2_penalty_loss = tf.norm(embedding_a, axis=-1, keepdims=False)
l2_penalty_loss += tf.norm(embedding_b, axis=-1, keepdims=False)
l2_penalty_loss *= FLAGS.l2_penalty
per_example_loss += l2_penalty_loss
loss += tf.reduce_mean(l2_penalty_loss)
model_output = {
"loss": loss,
"per_example_loss": per_example_loss,
"cos_similarity": cos_similarity,
"embedding_a": embedding_a,
"embedding_b": embedding_b,
"logits": logits,
"predictions": predictions,
}
if FLAGS.flow:
model_output["flow_example_loss"] = flow_loss_example_a + flow_loss_example_b
model_output["flow_loss"] = flow_loss_batch_a + flow_loss_batch_b
return model_output
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps, is_regression):
"""Returns `model_fn` closure for Estimator."""
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
"""The `model_fn` for Estimator."""
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids_a = features["input_ids_a"]
input_mask_a = features["input_mask_a"]
segment_ids_a = features["segment_ids_a"]
input_ids_b = features["input_ids_b"]
input_mask_b = features["input_mask_b"]
segment_ids_b = features["segment_ids_b"]
label_ids = features["label_ids"]
is_real_example = None
if "is_real_example" in features:
is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32)
else:
is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)
#### Training or Evaluation
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
#### Get loss from inputs
model_output = create_model(
bert_config, is_regression,
is_training,
input_ids_a, input_mask_a, segment_ids_a,
input_ids_b, input_mask_b, segment_ids_b,
label_ids,
num_labels)
tvars = tf.trainable_variables()
initialized_variable_names = {}
if init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
# if "flow" in var.name:
# input()
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
if FLAGS.flow_loss:
train_op = optimization_bert_flow.create_optimizer(
model_output["loss"], model_output["flow_loss"],
learning_rate, FLAGS.flow_learning_rate,
num_train_steps, num_warmup_steps, use_tpu=False)
tf.summary.scalar("loss", model_output["loss"])
tf.summary.scalar("flow_loss", model_output["flow_loss"])
output_spec = tf.estimator.EstimatorSpec(
mode=mode,
loss=model_output["loss"] + model_output["flow_loss"],
train_op=train_op)
else:
train_op = optimization.create_optimizer(
model_output["loss"], learning_rate,
num_train_steps, num_warmup_steps, use_tpu=False)
output_spec = tf.estimator.EstimatorSpec(
mode=mode,
loss=model_output["loss"],
train_op=train_op)
elif mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(model_output, label_ids, is_real_example):
predictions = tf.argmax(model_output["logits"], axis=-1, output_type=tf.int32)
accuracy = tf.metrics.accuracy(
labels=label_ids, predictions=model_output["predictions"],
weights=is_real_example)
loss = tf.metrics.mean(
values=model_output["per_example_loss"], weights=is_real_example)
metric_output = {
"eval_accuracy": accuracy,
"eval_loss": loss,
}
if "flow_loss" in model_output:
metric_output["eval_loss_flow"] = \
tf.metrics.mean(values=model_output["flow_example_loss"], weights=is_real_example)
metric_output["eval_loss_total"] = \
tf.metrics.mean(
values=model_output["per_example_loss"] + model_output["flow_example_loss"],
weights=is_real_example)
return metric_output
def regression_metric_fn(model_output, label_ids, is_real_example):
metric_output = {
"eval_loss": tf.metrics.mean(
values=model_output["per_example_loss"], weights=is_real_example),
"eval_pearsonr": tf.contrib.metrics.streaming_pearson_correlation(
model_output["cos_similarity"], label_ids, weights=is_real_example)
}
# metric_output["auc"] = tf.compat.v1.metrics.auc(
# label_ids, tf.math.maximum(model_output["cos_similarity"], 0), weights=is_real_example, curve='ROC')
if "flow_loss" in model_output:
metric_output["eval_loss_flow"] = \
tf.metrics.mean(values=model_output["flow_example_loss"], weights=is_real_example)
metric_output["eval_loss_total"] = \
tf.metrics.mean(
values=model_output["per_example_loss"] + model_output["flow_example_loss"],
weights=is_real_example)
return metric_output
if is_regression:
metric_fn = regression_metric_fn
eval_metrics = metric_fn(model_output, label_ids, is_real_example)
output_spec = tf.estimator.EstimatorSpec(
mode=mode,
loss=model_output["loss"],
eval_metric_ops=eval_metrics)
else:
output_spec = tf.estimator.EstimatorSpec(
mode=mode,
predictions= {"embedding_a": model_output["embedding_a"],
"embedding_b": model_output["embedding_b"]} if FLAGS.predict_pool else \
{"cos_similarity": model_output["cos_similarity"]})
return output_spec
return model_fn
def main(_):
tf.logging.set_verbosity(tf.logging.INFO)
# random seed
random.seed(FLAGS.seed)
np.random.seed(FLAGS.seed)
tf.compat.v1.set_random_seed(FLAGS.seed)
print("FLAGS.seed", FLAGS.seed)
# input()
# prevent double printing of the tf logs
logger = tf.get_logger()
logger.propagate = False
# get tokenizer
tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case,
FLAGS.init_checkpoint)
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
# get bert config
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
if FLAGS.max_seq_length > bert_config.max_position_embeddings:
raise ValueError(
"Cannot use sequence length %d because the BERT model "
"was only trained up to sequence length %d" %
(FLAGS.max_seq_length, bert_config.max_position_embeddings))
# GPU config
run_config = tf.compat.v1.ConfigProto()
if FLAGS.use_xla:
run_config.graph_options.optimizer_options.global_jit_level = \
tf.OptimizerOptions.ON_1
run_config.gpu_options.allow_growth = True
if FLAGS.do_senteval:
# Set up logger
import logging
tf.logging.set_verbosity(0)
logging.basicConfig(format='%(asctime)s : %(message)s', level=logging.DEBUG)
# load senteval
import sys
PATH_TO_SENTEVAL, PATH_TO_DATA = '../SentEval', '../SentEval/data'
sys.path.insert(0, PATH_TO_SENTEVAL)
import senteval
# model
tf.logging.info("***** Running SentEval *****")
with tf.Graph().as_default():
with tf.variable_scope("bert") as scope:
input_ids = tf.placeholder(shape=[None, None], dtype=tf.int32, name="input_ids")
input_mask = tf.placeholder(shape=[None, None], dtype=tf.int32, name="input_mask")
segment_ids = tf.placeholder(shape=[None, None], dtype=tf.int32, name="segment_ids")
embedding, flow_loss_batch, flow_loss_example = \
get_embedding(bert_config, False,
input_ids, input_mask, segment_ids, scope=scope)
embedding = tf.nn.l2_normalize(embedding, axis=-1)
tvars = tf.trainable_variables()
initialized_variable_names = {}
if FLAGS.init_checkpoint:
(assignment_map, initialized_variable_names
) = modeling.get_assignment_map_from_checkpoint(tvars, FLAGS.init_checkpoint)
tf.train.init_from_checkpoint(FLAGS.init_checkpoint, assignment_map)
tf.logging.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
init_string)
with tf.train.MonitoredSession(
session_creator=tf.compat.v1.train.ChiefSessionCreator(config=run_config)) as session:
# SentEval prepare and batcher
def prepare(params, samples):
return
def batcher(params, batch):
batch_input_ids, batch_input_mask, batch_segment_ids = [], [], []
for sent in batch:
if type(sent[0]) == bytes:
sent = [_.decode() for _ in sent]
text = ' '.join(sent) if sent != [] else '.'
# print(text)
_input_ids, _input_mask, _segment_ids, _tokens = \
get_input_mask_segment(text, FLAGS.max_seq_length, tokenizer)
batch_input_ids.append(_input_ids)
batch_input_mask.append(_input_mask)
batch_segment_ids.append(_segment_ids)
batch_input_ids = np.asarray(batch_input_ids)
batch_input_mask = np.asarray(batch_input_mask)
batch_segment_ids = np.asarray(batch_segment_ids)
print(".", end="")
return session.run(embedding,
{input_ids: batch_input_ids,
input_mask: batch_input_mask,
segment_ids: batch_segment_ids})
# Set params for SentEval
params_senteval = {'task_path': PATH_TO_DATA, 'usepytorch': True, 'kfold': 5}
params_senteval['classifier'] = {'nhid': 0, 'optim': 'rmsprop', 'batch_size': 128,
'tenacity': 3, 'epoch_size': 2}
# main
se = senteval.engine.SE(params_senteval, batcher, prepare)
# transfer_tasks = ['STS12', 'STS13', 'STS14', 'STS15', 'STS16',
# 'MR', 'CR', 'MPQA', 'SUBJ', 'SST2', 'SST5', 'TREC', 'MRPC',
# 'SICKEntailment', 'SICKRelatedness', 'STSBenchmark',
# 'Length', 'WordContent', 'Depth', 'TopConstituents',
# 'BigramShift', 'Tense', 'SubjNumber', 'ObjNumber',
# 'OddManOut', 'CoordinationInversion']
#transfer_tasks = ['STS12', 'STS13', 'STS14', 'STS15', 'STS16', 'STSBenchmark', 'SICKRelatedness']
#transfer_tasks = ['MR', 'CR', 'SUBJ', 'MPQA', 'SST2', 'TREC', 'MRPC']
transfer_tasks = FLAGS.senteval_tasks.split(",")
results = se.eval(transfer_tasks)
from collections import OrderedDict
results = OrderedDict(results)
for key in sorted(results):
value = results[key]
if key.startswith("STS"):
print("'" + key + "':", value["all"])
else:
print(key, value)
return
processors = {
'sts-b': StsbProcessor,
'sick-r': SickRProcessor,
'mnli': MnliProcessor,
'allnli': MnliProcessor,
'qqp': QqpProcessor,
'sts-12-16': Sts_12_16_Processor,
'sts-12': Sts_12_16_Processor,
'sts-13': Sts_12_16_Processor,
'sts-14': Sts_12_16_Processor,
'sts-15': Sts_12_16_Processor,
'sts-16': Sts_12_16_Processor,
'mrpc-regression': MrpcRegressionProcessor,
'qnli-regression': QnliRegressionProcessor,
}
task_name = FLAGS.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
if task_name == 'sick-r' or task_name.startswith("sts"):
is_regression = True
label_min, label_max = 0., 5.
elif task_name in ['qqp', 'mrpc-regression', 'qnli-regression']:
is_regression = True
label_min, label_max = 0., 1.
else:
is_regression = False
label_min, label_max = 0., 1.
dupe_factor = FLAGS.dupe_factor
processor = processors[task_name]()
label_list = processor.get_labels()
# this block is moved here for calculating the epoch_step for save_checkpoints_steps
train_examples = None
num_train_steps = None
num_warmup_steps = None
if task_name == "allnli":
FLAGS.data_dir = os.path.join(os.path.dirname(FLAGS.data_dir), "MNLI")
if FLAGS.do_train and FLAGS.num_train_epochs > 1e-6:
train_examples = processor.get_train_examples(FLAGS.data_dir)
if task_name == "allnli":
snli_data_dir = os.path.join(os.path.dirname(FLAGS.data_dir), "SNLI")
train_examples.extend(SnliTrainProcessor().get_train_examples(snli_data_dir))
train_examples.extend(SnliDevTestProcessor().get_dev_examples(snli_data_dir))
train_examples.extend(SnliDevTestProcessor().get_test_examples(snli_data_dir))
if FLAGS.use_full_for_training:
eval_examples = processor.get_dev_examples(FLAGS.data_dir)
predict_examples = processor.get_test_examples(FLAGS.data_dir)
train_examples.extend(eval_examples + predict_examples)
num_train_steps = int(
len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs)
num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)
epoch_step = int(len(train_examples) / FLAGS.train_batch_size)
if FLAGS.num_examples > 0:
random.shuffle(train_examples)
for i in range(FLAGS.num_examples, len(train_examples)):
train_examples[i].label = -10
random.shuffle(train_examples)
# ==== #
if FLAGS.early_stopping:
save_checkpoints_steps = epoch_step
else:
save_checkpoints_steps = FLAGS.save_checkpoints_steps
keep_checkpoint_max = 3
save_summary_steps = log_every_step = FLAGS.log_every_step
tf.logging.info("save_checkpoints_steps: %d" % save_checkpoints_steps)
# make exp dir
if FLAGS.exp_name:
output_dir = os.path.join(FLAGS.output_parent_dir, FLAGS.exp_name)
elif FLAGS.exp_name_prefix:
output_dir = os.path.join(FLAGS.output_parent_dir, FLAGS.exp_name_prefix)
output_dir += "_t_%s" % (FLAGS.task_name)
output_dir += "_ep_%.2f" % (FLAGS.num_train_epochs)
output_dir += "_lr_%.2e" % (FLAGS.learning_rate)
if FLAGS.train_batch_size != 32:
output_dir += "_bsz_%d" % (FLAGS.train_batch_size)
if FLAGS.sentence_embedding_type != "avg":
output_dir += "_e_%s" % (FLAGS.sentence_embedding_type)
if FLAGS.flow > 0:
output_dir += "_f_%d%d" % (FLAGS.flow, FLAGS.flow_loss)
if FLAGS.flow_loss > 0:
output_dir += "_%.2e" % (FLAGS.flow_learning_rate)
if FLAGS.use_full_for_training > 0:
output_dir += "_allsplits"
if FLAGS.flow_model_config != "config_l3_d3_w32":
output_dir += "_%s" % (FLAGS.flow_model_config)
if FLAGS.num_examples > 0:
output_dir += "_n_%d" % (FLAGS.num_examples)
if FLAGS.low_dim > -1:
output_dir += "_ld_%d" % (FLAGS.low_dim)
if FLAGS.l2_penalty > 0:
output_dir += "_l2_%.2e" % (FLAGS.l2_penalty)
else:
raise NotImplementedError
if tf.gfile.Exists(output_dir) and FLAGS.do_train:
tf.io.gfile.rmtree(output_dir)
tf.gfile.MakeDirs(output_dir)
# set up estimator
run_config = tf.estimator.RunConfig(
model_dir=output_dir,
save_summary_steps=save_summary_steps,
save_checkpoints_steps=save_checkpoints_steps,
keep_checkpoint_max=keep_checkpoint_max,
log_step_count_steps=log_every_step,
session_config=run_config)
model_fn = model_fn_builder(
bert_config=bert_config,
num_labels=len(label_list),
init_checkpoint=FLAGS.init_checkpoint,
learning_rate=FLAGS.learning_rate,
num_train_steps=num_train_steps,
num_warmup_steps=num_warmup_steps,
is_regression=is_regression)
estimator = tf.estimator.Estimator(
model_fn=model_fn,
config=run_config,
params={
'train_batch_size': FLAGS.train_batch_size,
'eval_batch_size': FLAGS.eval_batch_size,
'predict_batch_size': FLAGS.predict_batch_size})
def get_train_input_fn():
cached_dir = FLAGS.cached_dir
if not cached_dir:
cached_dir = output_dir
data_name = task_name
if FLAGS.num_examples > 0:
train_file = os.path.join(cached_dir,
data_name + "_n_%d" % (FLAGS.num_examples) \
+ "_seed_%d" % (FLAGS.seed) + "_train.tf_record")
elif FLAGS.use_full_for_training > 0:
train_file = os.path.join(cached_dir, data_name + "_allsplits.tf_record")
else:
train_file = os.path.join(cached_dir, data_name + "_train.tf_record")
if not tf.gfile.Exists(train_file):
file_based_convert_examples_to_features(
train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file,
dupe_factor, label_min, label_max,
is_training=True)
tf.logging.info("***** Running training *****")
tf.logging.info(" Num examples = %d", len(train_examples))
tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
tf.logging.info(" Num steps = %d", num_train_steps)
train_input_fn = file_based_input_fn_builder(
input_file=train_file,
seq_length=FLAGS.max_seq_length,
is_training=True,
drop_remainder=True,
is_regression=is_regression)
return train_input_fn
def get_eval_input_fn():
eval_examples = processor.get_dev_examples(FLAGS.data_dir)
num_actual_eval_examples = len(eval_examples)
cached_dir = FLAGS.cached_dir
if not cached_dir:
cached_dir = output_dir
eval_file = os.path.join(cached_dir, task_name + "_eval.tf_record")
if not tf.gfile.Exists(eval_file):
file_based_convert_examples_to_features(
eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file,
dupe_factor, label_min, label_max)
tf.logging.info("***** Running evaluation *****")
tf.logging.info(" Num examples = %d (%d actual, %d padding)",
len(eval_examples), num_actual_eval_examples,
len(eval_examples) - num_actual_eval_examples)
tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
# This tells the estimator to run through the entire set.
eval_drop_remainder = False
eval_input_fn = file_based_input_fn_builder(
input_file=eval_file,
seq_length=FLAGS.max_seq_length,
is_training=False,
drop_remainder=eval_drop_remainder,
is_regression=is_regression)
return eval_input_fn
def get_predict_input_fn():
predict_examples = None
if FLAGS.do_predict_on_dev:
predict_examples = processor.get_dev_examples(FLAGS.data_dir)
elif FLAGS.do_predict_on_full:
train_examples = processor.get_train_examples(FLAGS.data_dir)
eval_examples = processor.get_dev_examples(FLAGS.data_dir)
predict_examples = processor.get_test_examples(FLAGS.data_dir)
predict_examples.extend(eval_examples + train_examples)
else:
predict_examples = processor.get_test_examples(FLAGS.data_dir)
num_actual_predict_examples = len(predict_examples)
cached_dir = FLAGS.cached_dir
if not cached_dir:
cached_dir = output_dir
predict_file = os.path.join(cached_dir, task_name + "_predict.tf_record")
file_based_convert_examples_to_features(
predict_examples, label_list, FLAGS.max_seq_length, tokenizer, predict_file,
dupe_factor, label_min, label_max)
tf.logging.info("***** Running prediction*****")
tf.logging.info(" Num examples = %d (%d actual, %d padding)",
len(predict_examples), num_actual_predict_examples,
len(predict_examples) - num_actual_predict_examples)
tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size)
predict_drop_remainder = False
predict_input_fn = file_based_input_fn_builder(
input_file=predict_file,
seq_length=FLAGS.max_seq_length,
is_training=False,
drop_remainder=predict_drop_remainder,
is_regression=is_regression)
return predict_input_fn, num_actual_predict_examples
eval_steps = None
if FLAGS.do_train and FLAGS.num_train_epochs > 1e-6:
train_input_fn = get_train_input_fn()
if FLAGS.early_stopping:
eval_input_fn = get_eval_input_fn()
early_stopping_hook = tf.estimator.experimental.stop_if_no_decrease_hook(
estimator, metric_name="eval_pearsonr",
max_steps_without_decrease=epoch_step//2, run_every_steps=epoch_step, run_every_secs=None)
train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, max_steps=num_train_steps,
hooks=[early_stopping_hook])
start_delay_secs = FLAGS.start_delay_secs
throttle_secs = FLAGS.throttle_secs
tf.logging.info("start_delay_secs: %d; throttle_secs: %d" % (start_delay_secs, throttle_secs))
eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn, steps=eval_steps,
start_delay_secs=start_delay_secs, throttle_secs=throttle_secs)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
else:
estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
if FLAGS.do_eval:
eval_input_fn = get_eval_input_fn()
result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)
output_eval_file = os.path.join(output_dir, "eval_results.txt")
with tf.gfile.GFile(output_eval_file, "w") as writer:
tf.logging.info("***** Eval results *****")
for key in sorted(result.keys()):
tf.logging.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if FLAGS.do_predict:
predict_input_fn, num_actual_predict_examples = get_predict_input_fn()
checkpoint_path = None
if FLAGS.eval_checkpoint_name:
checkpoint_path = os.path.join(output_dir, FLAGS.eval_checkpoint_name)
result = estimator.predict(input_fn=predict_input_fn,
checkpoint_path=checkpoint_path)
def round_float_list(values):
values = [round(float(x), 6) for x in values.flat]
return values
fname = ""
if FLAGS.do_predict_on_full:
fname += "full"
elif FLAGS.do_predict_on_dev:
fname += "dev"
else:
fname += "test"
if FLAGS.predict_pool:
fname += "_pooled.tsv"
else:
fname += "_results.tsv"
if FLAGS.eval_checkpoint_name:
fname = FLAGS.eval_checkpoint_name + "." + fname
output_predict_file = os.path.join(output_dir, fname)
with tf.gfile.GFile(output_predict_file, "w") as writer:
num_written_lines = 0
tf.logging.info("***** Predict results *****")
for (i, prediction) in enumerate(result):
if is_regression:
if FLAGS.predict_pool:
embedding_a = prediction["embedding_a"]
embedding_b = prediction["embedding_b"]
output_json = collections.OrderedDict()
output_json["embedding_a"] = round_float_list(embedding_a)
output_json["embedding_b"] = round_float_list(embedding_b)
output_line = json.dumps(output_json) + "\n"
else:
cos_similarity = prediction["cos_similarity"]
if i >= num_actual_predict_examples:
break
output_line = str(cos_similarity) + "\n"
else:
raise NotImplementedError
writer.write(output_line)
num_written_lines += 1
assert num_written_lines == num_actual_predict_examples
tf.logging.info("*** output_dir ***")
tf.logging.info(output_dir)
if __name__ == "__main__":
flags.mark_flag_as_required("data_dir")
flags.mark_flag_as_required("task_name")
flags.mark_flag_as_required("vocab_file")
flags.mark_flag_as_required("bert_config_file")
tf.app.run()