We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
感觉作者训练有造假的嫌疑,首先 ops = [glow_ops.get_variable_ddi, glow_ops.actnorm, glow_ops.get_dropout] encoder = glow_ops.encoder_decoder self.z, encoder_objective, self.eps, _, _ = encoder( "flow", x, self.hparams, eps=None, reverse=False,init=init) objective += encoder_objective 这时的objective 损失为正,原因是其实就是在变换过程中antocrm的参数以及分割向量后经过正态分布密度函数后的log_prob的概率负数,但是作者确实使用+=,有待商榷,参数总和可能为正也可能为负,但是log_prob一定为负,由于概率再0-1之间, self.z_top_shape =self.z.shape prior_dist = self.top_prior() prior_objective =paddle.sum( prior_dist.log_prob(self.z), axis=[1, 2, 3]) #self.z_sample = prior_dist.sample() objective += prior_objective 所以这个为负数就一点也不奇怪,所以作者的试验效果好,确实需要验证,我正在验证中
求作者出来解释一下
The text was updated successfully, but these errors were encountered:
No branches or pull requests
感觉作者训练有造假的嫌疑,首先
ops = [glow_ops.get_variable_ddi, glow_ops.actnorm, glow_ops.get_dropout]
encoder = glow_ops.encoder_decoder
self.z, encoder_objective, self.eps, _, _ = encoder(
"flow", x, self.hparams, eps=None, reverse=False,init=init)
objective += encoder_objective
这时的objective 损失为正,原因是其实就是在变换过程中antocrm的参数以及分割向量后经过正态分布密度函数后的log_prob的概率负数,但是作者确实使用+=,有待商榷,参数总和可能为正也可能为负,但是log_prob一定为负,由于概率再0-1之间,
self.z_top_shape =self.z.shape
prior_dist = self.top_prior()
prior_objective =paddle.sum(
prior_dist.log_prob(self.z), axis=[1, 2, 3])
#self.z_sample = prior_dist.sample()
objective += prior_objective
所以这个为负数就一点也不奇怪,所以作者的试验效果好,确实需要验证,我正在验证中
求作者出来解释一下
The text was updated successfully, but these errors were encountered: