We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
請問一下蘇大,由於您的capsule_test裏的前一層採用了: Reshape((-1,128))應該是對應於primary capsule, 這是否是對應於128 capsule的dim而非數量? 因為我稍微看了一下原本Hinton的paper和下面這個實現 https://github.com/XifengGuo/CapsNet-Keras 似乎都把8-dim 當作primary capsule的特徵維度。 雖然說dim和num就算反過來也完全可以做運算, 只是想問一下跟原paper之間的關係是否是想選擇128當作capsule num?
P.S. Blog真的解釋得非常好,真的獲益良多,感謝
The text was updated successfully, but these errors were encountered:
在他的test里面, -1 应该是对应 num_capsule , 128 应该是对应 capsule_dim
Sorry, something went wrong.
No branches or pull requests
請問一下蘇大,由於您的capsule_test裏的前一層採用了:
Reshape((-1,128))應該是對應於primary capsule,
這是否是對應於128 capsule的dim而非數量?
因為我稍微看了一下原本Hinton的paper和下面這個實現
https://github.com/XifengGuo/CapsNet-Keras
似乎都把8-dim 當作primary capsule的特徵維度。
雖然說dim和num就算反過來也完全可以做運算,
只是想問一下跟原paper之間的關係是否是想選擇128當作capsule num?
P.S. Blog真的解釋得非常好,真的獲益良多,感謝
The text was updated successfully, but these errors were encountered: