-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEliasOmega.py
95 lines (71 loc) · 2.11 KB
/
EliasOmega.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
"""
Elias Omega code in Python
http://en.wikipedia.org/wiki/Elias_omega_coding
Peter Elias, "Universal codeword sets and representations of the integers", IEEE Trans. Information Theory 21(2):194-203, Mar 1975.
Also known as the log* (or "logstar") code in Rohan Baxter's 1996 PhD thesis.
Type 'python EliasOmega.py' to run the tests.
"""
# A Python function decorator to remember computed values
def __memoize(function):
memo = {}
def wrapper(*args):
if args in memo:
return memo[args]
else:
rv = function(*args)
memo[args] = rv
return rv
return wrapper
@__memoize
def __recursive_encode(n):
s = ""
if n > 1:
b = bin(n)[2:]
s += __recursive_encode(len(b) - 1) + b
return s
@__memoize
def __recursive_decode(s, n):
if s[0] == "0":
return [n, s[1:]]
else:
m = int(s[:n + 1], 2)
return __recursive_decode(s[n + 1:], m)
def encode(n):
"""Encode a string using the Elias Omega code.
>>> encode(16)
'10100100000'
>>> encode(100)
'1011011001000'
>>> encode(1000)
'11100111111010000'
>>> encode(1000000)
'1010010011111101000010010000000'
>>> [encode(n) for n in range(1, 18)]
['0', '100', '110', '101000', '101010', '101100', '101110', '1110000', '1110010', '1110100', '1110110', '1111000', '1111010', '1111100', '1111110', '10100100000', '10100100010']
"""
return __recursive_encode(n) + "0"
def decode(s):
"""Decode a string containing a binary number encoded using the Elias Omega code.
>>> decode('1011011001000')
[100, '']
>>> all([decode(encode(n))[0]==n for n in range(1, 10000)])
True
"""
return __recursive_decode(s, 1)
def codelength(n):
"""Calculate the Elias Omega codelength.
>>> codelength(17)
11
"""
return len(encode(n))
def probability(n):
"""Approximate the probability of n implied by the Elias Omega code.
>>> probability(2)==1/8.
True
"""
return pow(2, -float(codelength(n)))
def _test():
import doctest
doctest.testmod()
if __name__ == "__main__":
_test()