forked from yl4579/StyleTTS2
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmeldataset.py
274 lines (220 loc) · 7.84 KB
/
meldataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# coding: utf-8
import os
import os.path as osp
import time
import random
import numpy as np
import random
import soundfile as sf
import librosa
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
from torch.utils.data import DataLoader
from text_utils import TextCleaner
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
import pandas as pd
np.random.seed(1)
random.seed(1)
mean, std = -4, 4
def preprocess(wave, to_melspec):
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_melspec(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
class FilePathDataset(torch.utils.data.Dataset):
def __init__(
self,
data_list,
root_path,
sr=24000,
data_augmentation=False,
validation=False,
OOD_data="Data/OOD_texts.txt",
min_length=50,
max_length=512,
spect_params={},
):
_data_list = [l.strip().split("|") for l in data_list]
self.data_list = [data if len(data) == 3 else (*data, 0) for data in _data_list]
self.text_cleaner = TextCleaner()
self.sr = sr
self.df = pd.DataFrame(self.data_list)
self.to_melspec = torchaudio.transforms.MelSpectrogram(**spect_params)
self.mean, self.std = -4, 4
self.data_augmentation = data_augmentation and (not validation)
self.max_mel_length = 192
self.max_length = max_length
self.min_length = min_length
with open(OOD_data, "r", encoding="utf-8") as f:
tl = f.readlines()
idx = 1 if ".wav" in tl[0].split("|")[0] else 0
self.ptexts = [t.split("|")[idx] for t in tl]
self.root_path = root_path
def __len__(self):
return len(self.data_list)
def __getitem__(self, idx):
while True:
data = self.data_list[idx]
path = data[0]
wave, text_tensor, speaker_id = self._load_tensor(data)
# # If the data was skipped due to length, try the next item
# if text_tensor is None:
# idx = (idx + 1) % len(self.data_list)
# continue
mel_tensor = preprocess(wave, self.to_melspec).squeeze()
acoustic_feature = mel_tensor.squeeze()
length_feature = acoustic_feature.size(1)
acoustic_feature = acoustic_feature[:, : (length_feature - length_feature % 2)]
# get reference sample
ref_data = (self.df[self.df[2] == str(speaker_id)]).sample(n=1).iloc[0].tolist()
ref_mel_tensor, ref_label = self._load_data(ref_data[:3])
# get OOD text
ps = ""
while True:
rand_idx = np.random.randint(0, len(self.ptexts) - 1)
ps = self.ptexts[rand_idx]
# Skip if text is too short
if len(ps) < self.min_length:
continue
text = self.text_cleaner(ps)
# Skip if cleaned text is too long
if len(text) > self.max_length - 2: # -2 to account for start/end tokens
continue
text.insert(0, 0)
text.append(0)
ref_text = torch.LongTensor(text)
break
return (
speaker_id,
acoustic_feature,
text_tensor,
ref_text,
ref_mel_tensor,
ref_label,
path,
wave,
)
def _load_tensor(self, data):
wave_path, text, speaker_id = data
speaker_id = int(speaker_id)
wave, sr = sf.read(osp.join(self.root_path, wave_path))
if wave.shape[-1] == 2:
wave = wave[:, 0].squeeze()
if sr != 24000:
wave = librosa.resample(wave, orig_sr=sr, target_sr=24000)
wave = np.concatenate([np.zeros([5000]), wave, np.zeros([5000])], axis=0)
text = self.text_cleaner(text)
text.insert(0, 0)
text.append(0)
text = torch.LongTensor(text)
return wave, text, speaker_id
def _load_data(self, data):
wave, text_tensor, speaker_id = self._load_tensor(data)
mel_tensor = preprocess(wave, self.to_melspec).squeeze()
mel_length = mel_tensor.size(1)
if mel_length > self.max_mel_length:
random_start = np.random.randint(0, mel_length - self.max_mel_length)
mel_tensor = mel_tensor[:, random_start : random_start + self.max_mel_length]
return mel_tensor, speaker_id
class Collater(object):
"""
Args:
adaptive_batch_size (bool): if true, decrease batch size when long data comes.
"""
def __init__(self, return_wave=False):
self.text_pad_index = 0
self.min_mel_length = 192
self.max_mel_length = 192
self.return_wave = return_wave
def __call__(self, batch):
# batch[0] = wave, mel, text, f0, speakerid
batch_size = len(batch)
# sort by mel length
lengths = [b[1].shape[1] for b in batch]
batch_indexes = np.argsort(lengths)[::-1]
batch = [batch[bid] for bid in batch_indexes]
nmels = batch[0][1].size(0)
max_mel_length = max([b[1].shape[1] for b in batch])
max_text_length = max([b[2].shape[0] for b in batch])
max_rtext_length = max([b[3].shape[0] for b in batch])
labels = torch.zeros((batch_size)).long()
mels = torch.zeros((batch_size, nmels, max_mel_length)).float()
texts = torch.zeros((batch_size, max_text_length)).long()
ref_texts = torch.zeros((batch_size, max_rtext_length)).long()
input_lengths = torch.zeros(batch_size).long()
ref_lengths = torch.zeros(batch_size).long()
output_lengths = torch.zeros(batch_size).long()
ref_mels = torch.zeros((batch_size, nmels, self.max_mel_length)).float()
ref_labels = torch.zeros((batch_size)).long()
paths = ["" for _ in range(batch_size)]
waves = [None for _ in range(batch_size)]
for bid, (
label,
mel,
text,
ref_text,
ref_mel,
ref_label,
path,
wave,
) in enumerate(batch):
mel_size = mel.size(1)
text_size = text.size(0)
rtext_size = ref_text.size(0)
labels[bid] = label
mels[bid, :, :mel_size] = mel
texts[bid, :text_size] = text
ref_texts[bid, :rtext_size] = ref_text
input_lengths[bid] = text_size
ref_lengths[bid] = rtext_size
output_lengths[bid] = mel_size
paths[bid] = path
ref_mel_size = ref_mel.size(1)
ref_mels[bid, :, :ref_mel_size] = ref_mel
ref_labels[bid] = ref_label
waves[bid] = wave
return (
waves,
texts,
input_lengths,
ref_texts,
ref_lengths,
mels,
output_lengths,
ref_mels,
)
def build_dataloader(
path_list,
root_path,
validation=False,
OOD_data="Data/OOD_texts.txt",
min_length=50,
batch_size=4,
num_workers=1,
device="cpu",
collate_config={},
dataset_config={},
):
dataset = FilePathDataset(
path_list,
root_path,
OOD_data=OOD_data,
min_length=min_length,
validation=validation,
**dataset_config,
)
collate_fn = Collater(**collate_config)
data_loader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=(not validation),
num_workers=num_workers,
drop_last=(not validation),
collate_fn=collate_fn,
pin_memory=(device != "cpu"),
)
return data_loader