forked from mike-lischke/GraphicEx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MZLib.pas
5744 lines (5005 loc) · 209 KB
/
MZLib.pas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
unit MZLib;
// Original copyright of the creators:
//
// zlib.H -- interface of the 'zlib' general purpose compression library version 1.1.0, Feb 24th, 1998
//
// Copyright (C) 1995-1998 Jean-loup Gailly and Mark Adler
//
// This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held
// liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter
// it and redistribute it freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is
// not required.
// 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
// 3. This notice may not be removed or altered from any Source distribution.
//
// Jean-loup Gailly Mark Adler
// jloup@gzip.org madler@alumni.caltech.edu
//
// The data format used by the zlib library is described by RFCs (Request for Comments) 1950 to 1952 in the files
// ftp://deststate.internic.net/rfc/rfc1950.txt (zlib format), rfc1951.txt (Deflate format) and rfc1952.txt (gzip format).
//
// patch 112 from the zlib home page is implicitly applied here
//
// Delphi translation: (C) 2000 by Dipl. Ing. Mike Lischke (www.delphi-gems.com)
interface
uses
Windows;
// The 'zlib' compression library provides in-memory compression and decompression functions, including integrity checks
// of the uncompressed data. This version of the library supports only one compression method (deflation) but other
// algorithms will be added later and will have the same stream interface.
//
// Compression can be done in a single step if the buffers are large enough (for example if an input file is mmap'ed),
// or can be done by repeated calls of the compression function. In the latter case, the application must provide more
// input and/or consume the output (providing more output space) before each call.
//
// The library also supports reading and writing files in gzip (.gz) format.
//
// The library does not install any signal handler. The decoder checks
// the consistency of the compressed data, so the library should never
// crash even in case of corrupted input.
//----------------- general library stuff ------------------------------------------------------------------------------
resourcestring
SNeedDict = 'need dictionary';
SStreamEnd = 'stream end';
SFileError = 'file error';
SStreamError = 'stream error';
SDataError = 'data error';
SInsufficientMemory = 'insufficient memory';
SBufferError = 'buffer error';
SIncompatibleVersion = 'incompatible version';
SInvalidDistanceCode = 'invalid distance code';
SInvalidLengthCode = 'invalid literal/length code';
SOversubscribedDBLTree = 'oversubscribed dynamic bit lengths tree';
SIncompleteDBLTree = 'incomplete dynamic bit lengths tree';
SOversubscribedLLTree = 'oversubscribed literal/length tree';
SIncompleteLLTree = 'incomplete literal/length tree';
SEmptyDistanceTree = 'empty distance tree with lengths';
SInvalidBlockType = 'invalid block type';
SInvalidStoredBlockLengths = 'invalid stored block lengths';
STooManyLDSymbols = 'too many length or distance symbols';
SInvalidBitLengthRepeat = 'invalid bit length repeat';
SIncorrectDataCheck = 'incorrect data check';
SUnknownCompression = 'unknown compression method';
SInvalidWindowSize = 'invalid window size';
SIncorrectHeaderCheck = 'incorrect header check';
SNeedDictionary = 'need dictionary';
type
PWord = ^Word;
PInteger = ^Integer;
PCardinal = ^Cardinal;
type
TByteArray = array[0..(MaxInt div SizeOf(Byte)) - 1] of Byte;
PByteArray = ^TByteArray;
TWordArray = array[0..(MaxInt div SizeOf(Word)) - 1] of Word;
PWordArray = ^TWordArray;
TIntegerArray = array[0..(MaxInt div SizeOf(Integer)) - 1] of Integer;
PIntegerArray = ^TIntegerArray;
TCardinalArray = array[0..(MaxInt div SizeOf(Cardinal)) - 1] of Cardinal;
PCardinalArray = ^TCardinalArray;
const
// maximum value for MemLevel in DeflateInit2
MAX_MEM_LEVEL = 9;
DEF_MEM_LEVEL = 8;
// maximum value for WindowBits in DeflateInit2 and InflateInit2
MAX_WBITS = 15; // 32K LZ77 window
// default WindowBits for decompression, MAX_WBITS is for compression only
DEF_WBITS = MAX_WBITS;
type
PInflateHuft = ^TInflateHuft;
TInflateHuft = record
Exop, // number of extra bits or operation
Bits: Byte; // number of bits in this code or subcode
Base: Cardinal; // literal, Length base, or distance base or table offset
end;
THuftField = array[0..(MaxInt div SizeOf(TInflateHuft)) - 1] of TInflateHuft;
PHuftField = ^THuftField;
PPInflateHuft = ^PInflateHuft;
TInflateCodesMode = ( // waiting for "I:"=input, "O:"=output, "X:"=nothing
icmStart, // X: set up for Len
icmLen, // I: get length/literal/eob next
icmLenNext, // I: getting length extra (have base)
icmDistance, // I: get distance next
icmDistExt, // I: getting distance extra
icmCopy, // O: copying bytes in window, waiting for space
icmLit, // O: got literal, waiting for output space
icmWash, // O: got eob, possibly still output waiting
icmZEnd, // X: got eob and all data flushed
icmBadCode // X: got error
);
// inflate codes private state
PInflateCodesState = ^TInflateCodesState;
TInflateCodesState = record
Mode: TInflateCodesMode; // current inflate codes mode
// mode dependent information
Len: Cardinal;
Sub: record // submode
case Byte of
0:
(Code: record // if Len or Distance, where in tree
Tree: PInflateHuft; // pointer into tree
need: Cardinal; // bits needed
end);
1:
(lit: Cardinal); // if icmLit, literal
2:
(copy: record // if EXT or icmCopy, where and how much
get: Cardinal; // bits to get for extra
Distance: Cardinal; // distance back to copy from
end);
end;
// mode independent information
LiteralTreeBits: Byte; // LiteralTree bits decoded per branch
DistanceTreeBits: Byte; // DistanceTree bits decoder per branch
LiteralTree: PInflateHuft; // literal/length/eob tree
DistanceTree: PInflateHuft; // distance tree
end;
TCheckFunction = function(Check: Cardinal; Buffer: PByte; Len: Cardinal): Cardinal;
TInflateBlockMode = (
ibmZType, // get type bits (3, including end bit)
ibmLens, // get lengths for stored
ibmStored, // processing stored block
ibmTable, // get table lengths
ibmBitTree, // get bit lengths tree for a dynamic block
ibmDistTree, // get length, distance trees for a dynamic block
ibmCodes, // processing fixed or dynamic block
ibmDry, // output remaining window bytes
ibmBlockDone, // finished last block, done
ibmBlockBad // got a data error -> stuck here
);
// inflate blocks semi-private state
PInflateBlocksState = ^TInflateBlocksState;
TInflateBlocksState = record
Mode: TInflateBlockMode; // current inflate block mode
// mode dependent information
Sub: record // submode
case Byte of
0:
(left: Cardinal); // if ibmStored, bytes left to copy
1:
(Trees: record // if DistanceTree, decoding info for trees
Table: Cardinal; // table lengths (14 Bits)
Index: Cardinal; // index into blens (or BitOrder)
blens: PCardinalArray; // bit lengths of codes
BB: Cardinal; // bit length tree depth
TB: PInflateHuft; // bit length decoding tree
end);
2:
(decode: record // if ibmCodes, current state
TL: PInflateHuft;
TD: PInflateHuft; // trees to free
codes: PInflateCodesState;
end);
end;
Last: Boolean; // True if this block is the last block
// mode independent information
bitk: Cardinal; // bits in bit buffer
bitb: Cardinal; // bit buffer
hufts: PHuftField; // single allocation for tree space
window: PByte; // sliding window
zend: PByte; // one byte after sliding window
read: PByte; // window read pointer
write: PByte; // window write pointer
CheckFunction: TCheckFunction; // check function
Check: Cardinal; // check on output
end;
TInflateMode = (
imMethod, // waiting for imMethod Byte
imFlag, // waiting for flag byte
imDict4, // four dictionary check bytes to go
imDict3, // three dictionary check bytes to go
imDict2, // two dictionary check bytes to go
imDict1, // one dictionary check byte to go
imDict0, // waiting for InflateSetDictionary
imBlocks, // decompressing blocks
imCheck4, // four check bytes to go
imCheck3, // three check bytes to go
imCheck2, // two check bytes to go
imCheck1, // one check byte to go
imDone, // finished check, done
imBad // got an error -> stay here
);
// inflate private state
PInternalState = ^TInternalState;
TInternalState = record
Mode: TInflateMode; // current inflate mode
// mode dependent information
Sub: record // submode
case Byte of
0:
(imMethod: Cardinal); // if FLAGS, imMethod byte
1:
(Check: record // if check, check values to compare
was: Cardinal; // computed check value
need: Cardinal; // stream check value
end);
2:
(marker: Cardinal); // if imBad, InflateSync's marker bytes count
end;
// mode independent information
nowrap: Boolean; // flag for no wrapper
wbits: Cardinal; // log2(window Size) (8..15, defaults to 15)
blocks: PInflateBlocksState; // current InflateBlocks state
end;
// The application must update NextInput and AvailableInput when AvailableInput has dropped to zero. It must update
// NextOutput and AvailableOutput when AvailableOutput has dropped to zero. All other fields are set by the
// compression library and must not be updated by the application.
//
// The fields TotalInput and TotalOutput can be used for statistics or progress reports. After compression, TotalInput
// holds the total size of the uncompressed data and may be saved for use in the decompressor
// (particularly if the decompressor wants to decompress everything in a single step).
PZState = ^TZState;
TZState = record
NextInput: PByte; // next input byte
AvailableInput: Cardinal; // number of bytes available at NextInput
TotalInput: Cardinal; // total number of input bytes read so far
NextOutput: PByte; // next output byte should be put there
AvailableOutput: Cardinal; // remaining free space at NextOutput
TotalOutput: Cardinal; // total number of bytes output so far
Msg: String; // last error message, '' if no error
State: PInternalState; // not visible by applications
DataType: Integer; // best guess about the data type: ASCII or binary
Adler: Cardinal; // Adler32 value of the uncompressed data
end;
const
// allowed flush values, see Deflate below for details
Z_NO_FLUSH = 0;
Z_PARTIAL_FLUSH = 1;
Z_SYNC_FLUSH = 2;
Z_FULL_FLUSH = 3;
Z_FINISH = 4;
// Return codes for the compression/decompression functions. Negative
// values are errors, positive values are used for special but normal events.
Z_OK = 0;
Z_STREAM_END = 1;
Z_NEED_DICT = 2;
Z_ERRNO = -1;
Z_STREAM_ERROR = -2;
Z_DATA_ERROR = -3;
Z_MEM_ERROR = -4;
Z_BUF_ERROR = -5;
Z_VERSION_ERROR = -6;
// compression levels
Z_DEFAULT_COMPRESSION = -1;
Z_NO_COMPRESSION = 0;
Z_BEST_SPEED = 1;
Z_BEST_COMPRESSION = 9;
// compression strategy, see DeflateInit2 below for details
Z_DEFAULT_STRATEGY = 0;
Z_FILTERED = 1;
Z_HUFFMAN_ONLY = 2;
// possible values of the DataType field
Z_BINARY = 0;
Z_ASCII = 1;
Z_UNKNOWN = 2;
// the Deflate compression imMethod (the only one supported in this Version)
Z_DEFLATED = 8;
// three kinds of block type
STORED_BLOCK = 0;
STATIC_TREES = 1;
DYN_TREES = 2;
// minimum and maximum match lengths
MIN_MATCH = 3;
MAX_MATCH = 258;
// preset dictionary flag in zlib header
PRESET_DICT = $20;
ZLIB_VERSION: String[10] = '1.1.2';
ERROR_BASE = Z_NEED_DICT;
ErrorMessages: array[0..9] of String = (
SNeedDict, // Z_NEED_DICT 2
SStreamEnd, // Z_STREAM_END 1
'', // Z_OK 0
SFileError, // Z_ERRNO -1
SStreamError, // Z_STREAM_ERROR -2
SDataError, // Z_DATA_ERROR -3
SInsufficientMemory, // Z_MEM_ERROR -4
SBufferError, // Z_BUF_ERROR -5
SIncompatibleVersion, // Z_VERSION_ERROR -6
''
);
function zError(Error: Integer): String;
function CRC32(CRC: Cardinal; Buffer: PByte; Len: Cardinal): Cardinal;
//----------------- deflation support ----------------------------------------------------------------------------------
function DeflateInit(var ZState: TZState; Level: Integer): Integer;
function DeflateInit_(ZState: PZState; Level: Integer; const Version: String; StreamSize: Integer): Integer;
function Deflate(var ZState: TZState; Flush: Integer): Integer;
function DeflateEnd(var ZState: TZState): Integer;
// The following functions are needed only in some special applications.
function DeflateInit2(var ZState: TZState; Level: Integer; Method: Byte; AWindowBits: Integer; MemLevel: Integer;
Strategy: Integer): Integer;
function DeflateSetDictionary(var ZState: TZState; Dictionary: PByte; DictLength: Cardinal): Integer;
function DeflateCopy(Dest: PZState; Source: PZState): Integer;
function DeflateReset(var ZState: TZState): Integer;
function DeflateParams(var ZState: TZState; Level: Integer; Strategy: Integer): Integer;
const
LENGTH_CODES = 29; // number of length codes, not counting the special END_BLOCK code
LITERALS = 256; // number of literal bytes 0..255
L_CODES = (LITERALS + 1 + LENGTH_CODES);
// number of literal or length codes, including the END_BLOCK code
D_CODES = 30; // number of distance codes
BL_CODES = 19; // number of codes used to transfer the bit lengths
HEAP_SIZE = (2 * L_CODES + 1); // maximum heap size
MAX_BITS = 15; // all codes must not exceed MAX_BITS bits
// stream status
INIT_STATE = 42;
BUSY_STATE = 113;
FINISH_STATE = 666;
type
// data structure describing a single value and its code string
PTreeEntry = ^TTreeEntry;
TTreeEntry = record
fc: record
case Byte of
0:
(Frequency: Word); // frequency count
1:
(Code: Word); // bit string
end;
dl: record
case Byte of
0:
(dad: Word); // father node in Huffman tree
1:
(Len: Word); // length of bit string
end;
end;
TLiteralTree = array[0..HEAP_SIZE - 1] of TTreeEntry; // literal and length tree
TDistanceTree = array[0..2 * D_CODES] of TTreeEntry; // distance tree
THuffmanTree = array[0..2 * BL_CODES] of TTreeEntry; // Huffman tree for bit lengths
PTree = ^TTree;
TTree = array[0..(MaxInt div SizeOf(TTreeEntry)) - 1] of TTreeEntry; // generic tree type
PStaticTreeDescriptor = ^TStaticTreeDescriptor;
TStaticTreeDescriptor = record
StaticTree: PTree; // static tree or nil
ExtraBits: PIntegerArray; // extra bits for each code or nil
ExtraBase: Integer; // base index for ExtraBits
Elements: Integer; // max number of elements in the tree
MaxLength: Integer; // max bit length for the codes
end;
PTreeDescriptor = ^TTreeDescriptor;
TTreeDescriptor = record
DynamicTree: PTree;
MaxCode: Integer; // largest code with non zero frequency
StaticDescriptor: PStaticTreeDescriptor; // the corresponding static tree
end;
PDeflateState = ^TDeflateState;
TDeflateState = record
ZState: PZState; // pointer back to this zlib stream
Status: Integer; // as the name implies
PendingBuffer: PByteArray; // output still pending
PendingBufferSize: Integer;
PendingOutput: PByte; // next pending byte to output to the stream
Pending: Integer; // nb of bytes in the pending buffer
NoHeader: Integer; // suppress zlib header and Adler32
DataType: Byte; // UNKNOWN, BINARY or ASCII
imMethod: Byte; // ibmStored (for zip only) or DEFLATED
LastFlush: Integer; // Value of flush param for previous deflate call
WindowSize: Cardinal; // LZ77 window size (32K by default)
WindowBits: Cardinal; // log2(WindowSize) (8..16)
WindowMask: Cardinal; // WindowSize - 1
// Sliding window. Input bytes are read into the second half of the window,
// and move to the first half later to keep a dictionary of at least WSize
// bytes. With this organization, matches are limited to a distance of
// WSize - MAX_MATCH bytes, but this ensures that IO is always
// performed with a length multiple of the block Size. Also, it limits
// the window Size to 64K, which is quite useful on MSDOS.
// To do: use the user input buffer as sliding window.
Window: PByteArray;
// Actual size of Window: 2 * WSize, except when the user input buffer
// is directly used as sliding window.
CurrentWindowSize: Integer;
// Link to older string with same hash index. to limit the size of this
// array to 64K, this link is maintained only for the last 32K strings.
// An index in this array is thus a window index modulo 32K.
Previous: PWordArray;
Head: PWordArray; // heads of the hash chains or nil
InsertHash: Cardinal; // hash index of string to be inserted
HashSize: Cardinal; // number of elements in hash table
HashBits: Cardinal; // log2(HashSize)
HashMask: Cardinal; // HashSize - 1
// Number of bits by which InsertHash must be shifted at each input step.
// It must be such that after MIN_MATCH steps, the oldest byte no longer
// takes part in the hash key, that is:
// HashShift * MIN_MATCH >= HashBits
HashShift: Cardinal;
// Window position at the beginning of the current output block. Gets
// negative when the window is moved backwards.
BlockStart: Integer;
MatchLength: Cardinal; // length of best match
PreviousMatch: Cardinal; // previous match
MatchAvailable: Boolean; // set if previous match exists
StringStart: Cardinal; // start of string to insert
MatchStart: Cardinal; // start of matching string
Lookahead: Cardinal; // number of valid bytes ahead in window
// Length of the best match at previous step. Matches not greater than this
// are discarded. This is used in the lazy match evaluation.
PreviousLength: Cardinal;
// To speed up deflation hash chains are never searched beyond this
// Length. A higher limit improves compression ratio but degrades the speed.
MaxChainLength: Cardinal;
Level: Integer; // compression level (1..9)
Strategy: Integer; // favor or force Huffman coding
GoodMatch: Cardinal; // use a faster search when the previous match is longer than this
NiceMatch: Cardinal; // stop searching when current match exceeds this
LiteralTree: TLiteralTree; // literal and length tree
DistanceTree: TDistanceTree; // distance tree
BitLengthTree: THuffmanTree; // Huffman tree for bit lengths
LiteralDescriptor: TTreeDescriptor; // Descriptor for literal tree
DistanceDescriptor: TTreeDescriptor; // Descriptor for distance tree
BitLengthDescriptor: TTreeDescriptor; // Descriptor for bit length tree
BitLengthCounts: array[0..MAX_BITS] of Word; // number of codes at each bit length for an optimal tree
Heap: array[0..2 * L_CODES] of Integer; // heap used to build the Huffman trees
HeapLength: Integer; // number of elements in the heap
HeapMaximum: Integer; // element of largest frequency
// The sons of Heap[N] are Heap[2 * N] and Heap[2 * N + 1]. Heap[0] is not used.
// The same heap array is used to build all trees.
Depth: array[0..2 * L_CODES] of Byte; // depth of each subtree used as tie breaker for trees of equal frequency
LiteralBuffer: PByteArray; // buffer for literals or lengths
// Size of match buffer for literals/lengths. There are 4 reasons for limiting LiteralBufferSize to 64K:
// - frequencies can be kept in 16 bit counters
// - If compression is not successful for the first block, all input
// data is still in the window so we can still emit a stored block even
// when input comes from standard input. This can also be done for
// all blocks if LiteralBufferSize is not greater than 32K.
// - if compression is not successful for a file smaller than 64K, we can
// even emit a stored file instead of a stored block (saving 5 bytes).
// This is applicable only for zip (not gzip or zlib).
// - creating new Huffman trees less frequently may not provide fast
// adaptation to changes in the input data statistics. (Take for
// example a binary file with poorly compressible code followed by
// a highly compressible string table.) Smaller buffer sizes give
// fast adaptation but have of course the overhead of transmitting
// trees more frequently.
// - I can't count above 4
LiteralBufferSize: Cardinal;
LastLiteral: Cardinal; // running index in LiteralBuffer
// Buffer for distances. To simplify the code, DistanceBuffer and LiteralBuffer have
// the same number of elements. To use different lengths, an extra flag array would be necessary.
DistanceBuffer: PWordArray;
OptimalLength: Integer; // bit length of current block with optimal trees
StaticLength: Integer; // bit length of current block with static trees
CompressedLength: Integer; // total bit length of compressed file
Matches: Cardinal; // number of string matches in current block
LastEOBLength: Integer; // bit length of EOB code for last block
BitsBuffer: Word; // Output buffer. Bits are inserted starting at the bottom (least significant bits).
ValidBits: Integer; // Number of valid bits in BitsBuffer. All Bits above the last valid bit are always zero.
case Byte of
0:
// Attempt to find a better match only when the current match is strictly smaller than this value.
// This mechanism is used only for compression levels >= 4.
(MaxLazyMatch: Cardinal);
1:
// Insert new strings in the hash table only if the match Length is not greater than this length. This saves
// time but degrades compression. MaxInsertLength is used only for compression levels <= 3.
(MaxInsertLength: Cardinal);
end;
//----------------- inflation support ----------------------------------------------------------------------------------
function InflateInit(var Z: TZState): Integer;
function InflateInit_(var Z: TZState; const Version: String; StreamSize: Integer): Integer;
function InflateInit2_(var Z: TZState; W: Integer; const Version: AnsiString; StreamSize: Integer): Integer;
function InflateInit2(var Z: TZState; AWindowBits: Integer): Integer;
function InflateEnd(var Z: TZState): Integer;
function InflateReset(var Z: TZState): Integer;
function Inflate(var Z: TZState; F: Integer): Integer;
function InflateSetDictionary(var Z: TZState; Dictionary: PByte; DictLength: Cardinal): Integer;
function InflateSync(var Z: TZState): Integer;
function IsInflateSyncPoint(var Z: TZState): Integer;
//----------------------------------------------------------------------------------------------------------------------
implementation
uses
SysUtils;
const
// Adler checksum
Base = Cardinal(65521); // largest prime smaller than 65536
NMAX = 3854; // Code with signed 32 bit integer
type
LH = record
L, H: Word;
end;
//----------------------------------------------------------------------------------------------------------------------
function zError(Error: Integer): String;
begin
Result := ErrorMessages[Z_NEED_DICT - Error];
end;
//----------------------------------------------------------------------------------------------------------------------
function Adler32(Adler: Cardinal; Buffer: PByte; Len: Cardinal): Cardinal;
var
s1, s2: Cardinal;
K: Integer;
begin
s1 := Adler and $FFFF;
s2 := (Adler shr 16) and $FFFF;
if Buffer = nil then Result := 1
else
begin
while Len > 0 do
begin
if Len < NMAX then K := Len
else K := NMAX;
Dec(Len, K);
while K > 0 do
begin
Inc(s1, Buffer^);
Inc(s2, s1);
Inc(Buffer);
Dec(K);
end;
s1 := s1 mod Base;
s2 := s2 mod Base;
end;
Result := (s2 shl 16) or s1;
end;
end;
//----------------------------------------------------------------------------------------------------------------------
var
// used to calculate the running CRC of a bunch of bytes,
// this table is dynamically created in order to save space if never needed
CRCTable: array of Cardinal;
procedure MakeCRCTable;
// creates the CRC table when it is needed the first time
var
C: Cardinal;
N, K : Integer;
Poly: Cardinal; // polynomial exclusive-or pattern
const
// terms of polynomial defining this CRC (except x^32)
P: array [0..13] of Byte = (0, 1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 22, 23, 26);
begin
// make exclusive-or pattern from polynomial ($EDB88320)
SetLength(CRCTable, 256);
Poly := 0;
for N := 0 to SizeOf(P) - 1 do
Poly := Poly or (1 shl (31 - P[N]));
for N := 0 to 255 do
begin
C := N;
for K := 0 to 7 do
begin
if (C and 1) <> 0 then C := Poly xor (C shr 1)
else C := C shr 1;
end;
CRCTable[N] := C;
end;
end;
//----------------------------------------------------------------------------------------------------------------------
function CRC32(CRC: Cardinal; Buffer: PByte; Len: Cardinal): Cardinal;
// Generate a table for a byte-wise 32-bit CRC calculation on the polynomial:
// x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
//
// Polynomials over GF(2) are represented in binary, one bit per coefficient,
// with the lowest powers in the most significant bit. Then adding polynomials
// is just exclusive-or, and multiplying a polynomial by x is a right shift by
// one. If we call the above polynomial p, and represent a byte as the
// polynomial q, also with the lowest power in the most significant bit (so the
// byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
// where a mod b means the remainder after dividing a by b.
//
// This calculation is done using the shift-register method of multiplying and
// taking the remainder. The register is initialized to zero, and for each
// incoming bit, x^32 is added mod p to the register if the bit is a one (where
// x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
// x (which is shifting right by one and adding x^32 mod p if the bit shifted
// out is a one). We start with the highest power (least significant bit) of
// q and repeat for all eight bits of q.
//
// The table is simply the CRC of all possible eight bit values. This is all
// the information needed to generate CRC's on data a byte at a time for all
// combinations of CRC register values and incoming bytes.
begin
if Buffer = nil then Result := 0
else
begin
if CRCTable = nil then MakeCRCTable;
CRC := CRC xor $FFFFFFFF;
while Len >= 8 do
begin
CRC := CRCTable[Byte(CRC) xor Buffer^] xor (CRC shr 8);
Inc(Buffer);
CRC := CRCTable[Byte(CRC) xor Buffer^] xor (CRC shr 8);
Inc(Buffer);
CRC := CRCTable[Byte(CRC) xor Buffer^] xor (CRC shr 8);
Inc(Buffer);
CRC := CRCTable[Byte(CRC) xor Buffer^] xor (CRC shr 8);
Inc(Buffer);
CRC := CRCTable[Byte(CRC) xor Buffer^] xor (CRC shr 8);
Inc(Buffer);
CRC := CRCTable[Byte(CRC) xor Buffer^] xor (CRC shr 8);
Inc(Buffer);
CRC := CRCTable[Byte(CRC) xor Buffer^] xor (CRC shr 8);
Inc(Buffer);
CRC := CRCTable[Byte(CRC) xor Buffer^] xor (CRC shr 8);
Inc(Buffer);
Dec(Len, 8);
end;
while Len > 0 do
begin
CRC := CRCTable[(CRC xor Buffer^) and $FF] xor (CRC shr 8);
Inc(Buffer);
Dec(Len);
end;
Result := CRC xor $FFFFFFFF;
end;
end;
//----------------- Huffmann trees -------------------------------------------------------------------------------------
const
DIST_CODE_LEN = 512; // see definition of array dist_code below
// The static literal tree. Since the bit lengths are imposed, there is no need for the L_CODES Extra codes used
// during heap construction. However the codes 286 and 287 are needed to build a canonical tree (see TreeInit below).
StaticLiteralTree: array[0..L_CODES + 1] of TTreeEntry = (
(fc: (Frequency: 12); dl: (Len: 8)), (fc: (Frequency: 140); dl: (Len: 8)), (fc: (Frequency: 76); dl: (Len: 8)),
(fc: (Frequency: 204); dl: (Len: 8)), (fc: (Frequency: 44); dl: (Len: 8)), (fc: (Frequency: 172); dl: (Len: 8)),
(fc: (Frequency: 108); dl: (Len: 8)), (fc: (Frequency: 236); dl: (Len: 8)), (fc: (Frequency: 28); dl: (Len: 8)),
(fc: (Frequency: 156); dl: (Len: 8)), (fc: (Frequency: 92); dl: (Len: 8)), (fc: (Frequency: 220); dl: (Len: 8)),
(fc: (Frequency: 60); dl: (Len: 8)), (fc: (Frequency: 188); dl: (Len: 8)), (fc: (Frequency: 124); dl: (Len: 8)),
(fc: (Frequency: 252); dl: (Len: 8)), (fc: (Frequency: 2); dl: (Len: 8)), (fc: (Frequency: 130); dl: (Len: 8)),
(fc: (Frequency: 66); dl: (Len: 8)), (fc: (Frequency: 194); dl: (Len: 8)), (fc: (Frequency: 34); dl: (Len: 8)),
(fc: (Frequency: 162); dl: (Len: 8)), (fc: (Frequency: 98); dl: (Len: 8)), (fc: (Frequency: 226); dl: (Len: 8)),
(fc: (Frequency: 18); dl: (Len: 8)), (fc: (Frequency: 146); dl: (Len: 8)), (fc: (Frequency: 82); dl: (Len: 8)),
(fc: (Frequency: 210); dl: (Len: 8)), (fc: (Frequency: 50); dl: (Len: 8)), (fc: (Frequency: 178); dl: (Len: 8)),
(fc: (Frequency: 114); dl: (Len: 8)), (fc: (Frequency: 242); dl: (Len: 8)), (fc: (Frequency: 10); dl: (Len: 8)),
(fc: (Frequency: 138); dl: (Len: 8)), (fc: (Frequency: 74); dl: (Len: 8)), (fc: (Frequency: 202); dl: (Len: 8)),
(fc: (Frequency: 42); dl: (Len: 8)), (fc: (Frequency: 170); dl: (Len: 8)), (fc: (Frequency: 106); dl: (Len: 8)),
(fc: (Frequency: 234); dl: (Len: 8)), (fc: (Frequency: 26); dl: (Len: 8)), (fc: (Frequency: 154); dl: (Len: 8)),
(fc: (Frequency: 90); dl: (Len: 8)), (fc: (Frequency: 218); dl: (Len: 8)), (fc: (Frequency: 58); dl: (Len: 8)),
(fc: (Frequency: 186); dl: (Len: 8)), (fc: (Frequency: 122); dl: (Len: 8)), (fc: (Frequency: 250); dl: (Len: 8)),
(fc: (Frequency: 6); dl: (Len: 8)), (fc: (Frequency: 134); dl: (Len: 8)), (fc: (Frequency: 70); dl: (Len: 8)),
(fc: (Frequency: 198); dl: (Len: 8)), (fc: (Frequency: 38); dl: (Len: 8)), (fc: (Frequency: 166); dl: (Len: 8)),
(fc: (Frequency: 102); dl: (Len: 8)), (fc: (Frequency: 230); dl: (Len: 8)), (fc: (Frequency: 22); dl: (Len: 8)),
(fc: (Frequency: 150); dl: (Len: 8)), (fc: (Frequency: 86); dl: (Len: 8)), (fc: (Frequency: 214); dl: (Len: 8)),
(fc: (Frequency: 54); dl: (Len: 8)), (fc: (Frequency: 182); dl: (Len: 8)), (fc: (Frequency: 118); dl: (Len: 8)),
(fc: (Frequency: 246); dl: (Len: 8)), (fc: (Frequency: 14); dl: (Len: 8)), (fc: (Frequency: 142); dl: (Len: 8)),
(fc: (Frequency: 78); dl: (Len: 8)), (fc: (Frequency: 206); dl: (Len: 8)), (fc: (Frequency: 46); dl: (Len: 8)),
(fc: (Frequency: 174); dl: (Len: 8)), (fc: (Frequency: 110); dl: (Len: 8)), (fc: (Frequency: 238); dl: (Len: 8)),
(fc: (Frequency: 30); dl: (Len: 8)), (fc: (Frequency: 158); dl: (Len: 8)), (fc: (Frequency: 94); dl: (Len: 8)),
(fc: (Frequency: 222); dl: (Len: 8)), (fc: (Frequency: 62); dl: (Len: 8)), (fc: (Frequency: 190); dl: (Len: 8)),
(fc: (Frequency: 126); dl: (Len: 8)), (fc: (Frequency: 254); dl: (Len: 8)), (fc: (Frequency: 1); dl: (Len: 8)),
(fc: (Frequency: 129); dl: (Len: 8)), (fc: (Frequency: 65); dl: (Len: 8)), (fc: (Frequency: 193); dl: (Len: 8)),
(fc: (Frequency: 33); dl: (Len: 8)), (fc: (Frequency: 161); dl: (Len: 8)), (fc: (Frequency: 97); dl: (Len: 8)),
(fc: (Frequency: 225); dl: (Len: 8)), (fc: (Frequency: 17); dl: (Len: 8)), (fc: (Frequency: 145); dl: (Len: 8)),
(fc: (Frequency: 81); dl: (Len: 8)), (fc: (Frequency: 209); dl: (Len: 8)), (fc: (Frequency: 49); dl: (Len: 8)),
(fc: (Frequency: 177); dl: (Len: 8)), (fc: (Frequency: 113); dl: (Len: 8)), (fc: (Frequency: 241); dl: (Len: 8)),
(fc: (Frequency: 9); dl: (Len: 8)), (fc: (Frequency: 137); dl: (Len: 8)), (fc: (Frequency: 73); dl: (Len: 8)),
(fc: (Frequency: 201); dl: (Len: 8)), (fc: (Frequency: 41); dl: (Len: 8)), (fc: (Frequency: 169); dl: (Len: 8)),
(fc: (Frequency: 105); dl: (Len: 8)), (fc: (Frequency: 233); dl: (Len: 8)), (fc: (Frequency: 25); dl: (Len: 8)),
(fc: (Frequency: 153); dl: (Len: 8)), (fc: (Frequency: 89); dl: (Len: 8)), (fc: (Frequency: 217); dl: (Len: 8)),
(fc: (Frequency: 57); dl: (Len: 8)), (fc: (Frequency: 185); dl: (Len: 8)), (fc: (Frequency: 121); dl: (Len: 8)),
(fc: (Frequency: 249); dl: (Len: 8)), (fc: (Frequency: 5); dl: (Len: 8)), (fc: (Frequency: 133); dl: (Len: 8)),
(fc: (Frequency: 69); dl: (Len: 8)), (fc: (Frequency: 197); dl: (Len: 8)), (fc: (Frequency: 37); dl: (Len: 8)),
(fc: (Frequency: 165); dl: (Len: 8)), (fc: (Frequency: 101); dl: (Len: 8)), (fc: (Frequency: 229); dl: (Len: 8)),
(fc: (Frequency: 21); dl: (Len: 8)), (fc: (Frequency: 149); dl: (Len: 8)), (fc: (Frequency: 85); dl: (Len: 8)),
(fc: (Frequency: 213); dl: (Len: 8)), (fc: (Frequency: 53); dl: (Len: 8)), (fc: (Frequency: 181); dl: (Len: 8)),
(fc: (Frequency: 117); dl: (Len: 8)), (fc: (Frequency: 245); dl: (Len: 8)), (fc: (Frequency: 13); dl: (Len: 8)),
(fc: (Frequency: 141); dl: (Len: 8)), (fc: (Frequency: 77); dl: (Len: 8)), (fc: (Frequency: 205); dl: (Len: 8)),
(fc: (Frequency: 45); dl: (Len: 8)), (fc: (Frequency: 173); dl: (Len: 8)), (fc: (Frequency: 109); dl: (Len: 8)),
(fc: (Frequency: 237); dl: (Len: 8)), (fc: (Frequency: 29); dl: (Len: 8)), (fc: (Frequency: 157); dl: (Len: 8)),
(fc: (Frequency: 93); dl: (Len: 8)), (fc: (Frequency: 221); dl: (Len: 8)), (fc: (Frequency: 61); dl: (Len: 8)),
(fc: (Frequency: 189); dl: (Len: 8)), (fc: (Frequency: 125); dl: (Len: 8)), (fc: (Frequency: 253); dl: (Len: 8)),
(fc: (Frequency: 19); dl: (Len: 9)), (fc: (Frequency: 275); dl: (Len: 9)), (fc: (Frequency: 147); dl: (Len: 9)),
(fc: (Frequency: 403); dl: (Len: 9)), (fc: (Frequency: 83); dl: (Len: 9)), (fc: (Frequency: 339); dl: (Len: 9)),
(fc: (Frequency: 211); dl: (Len: 9)), (fc: (Frequency: 467); dl: (Len: 9)), (fc: (Frequency: 51); dl: (Len: 9)),
(fc: (Frequency: 307); dl: (Len: 9)), (fc: (Frequency: 179); dl: (Len: 9)), (fc: (Frequency: 435); dl: (Len: 9)),
(fc: (Frequency: 115); dl: (Len: 9)), (fc: (Frequency: 371); dl: (Len: 9)), (fc: (Frequency: 243); dl: (Len: 9)),
(fc: (Frequency: 499); dl: (Len: 9)), (fc: (Frequency: 11); dl: (Len: 9)), (fc: (Frequency: 267); dl: (Len: 9)),
(fc: (Frequency: 139); dl: (Len: 9)), (fc: (Frequency: 395); dl: (Len: 9)), (fc: (Frequency: 75); dl: (Len: 9)),
(fc: (Frequency: 331); dl: (Len: 9)), (fc: (Frequency: 203); dl: (Len: 9)), (fc: (Frequency: 459); dl: (Len: 9)),
(fc: (Frequency: 43); dl: (Len: 9)), (fc: (Frequency: 299); dl: (Len: 9)), (fc: (Frequency: 171); dl: (Len: 9)),
(fc: (Frequency: 427); dl: (Len: 9)), (fc: (Frequency: 107); dl: (Len: 9)), (fc: (Frequency: 363); dl: (Len: 9)),
(fc: (Frequency: 235); dl: (Len: 9)), (fc: (Frequency: 491); dl: (Len: 9)), (fc: (Frequency: 27); dl: (Len: 9)),
(fc: (Frequency: 283); dl: (Len: 9)), (fc: (Frequency: 155); dl: (Len: 9)), (fc: (Frequency: 411); dl: (Len: 9)),
(fc: (Frequency: 91); dl: (Len: 9)), (fc: (Frequency: 347); dl: (Len: 9)), (fc: (Frequency: 219); dl: (Len: 9)),
(fc: (Frequency: 475); dl: (Len: 9)), (fc: (Frequency: 59); dl: (Len: 9)), (fc: (Frequency: 315); dl: (Len: 9)),
(fc: (Frequency: 187); dl: (Len: 9)), (fc: (Frequency: 443); dl: (Len: 9)), (fc: (Frequency: 123); dl: (Len: 9)),
(fc: (Frequency: 379); dl: (Len: 9)), (fc: (Frequency: 251); dl: (Len: 9)), (fc: (Frequency: 507); dl: (Len: 9)),
(fc: (Frequency: 7); dl: (Len: 9)), (fc: (Frequency: 263); dl: (Len: 9)), (fc: (Frequency: 135); dl: (Len: 9)),
(fc: (Frequency: 391); dl: (Len: 9)), (fc: (Frequency: 71); dl: (Len: 9)), (fc: (Frequency: 327); dl: (Len: 9)),
(fc: (Frequency: 199); dl: (Len: 9)), (fc: (Frequency: 455); dl: (Len: 9)), (fc: (Frequency: 39); dl: (Len: 9)),
(fc: (Frequency: 295); dl: (Len: 9)), (fc: (Frequency: 167); dl: (Len: 9)), (fc: (Frequency: 423); dl: (Len: 9)),
(fc: (Frequency: 103); dl: (Len: 9)), (fc: (Frequency: 359); dl: (Len: 9)), (fc: (Frequency: 231); dl: (Len: 9)),
(fc: (Frequency: 487); dl: (Len: 9)), (fc: (Frequency: 23); dl: (Len: 9)), (fc: (Frequency: 279); dl: (Len: 9)),
(fc: (Frequency: 151); dl: (Len: 9)), (fc: (Frequency: 407); dl: (Len: 9)), (fc: (Frequency: 87); dl: (Len: 9)),
(fc: (Frequency: 343); dl: (Len: 9)), (fc: (Frequency: 215); dl: (Len: 9)), (fc: (Frequency: 471); dl: (Len: 9)),
(fc: (Frequency: 55); dl: (Len: 9)), (fc: (Frequency: 311); dl: (Len: 9)), (fc: (Frequency: 183); dl: (Len: 9)),
(fc: (Frequency: 439); dl: (Len: 9)), (fc: (Frequency: 119); dl: (Len: 9)), (fc: (Frequency: 375); dl: (Len: 9)),
(fc: (Frequency: 247); dl: (Len: 9)), (fc: (Frequency: 503); dl: (Len: 9)), (fc: (Frequency: 15); dl: (Len: 9)),
(fc: (Frequency: 271); dl: (Len: 9)), (fc: (Frequency: 143); dl: (Len: 9)), (fc: (Frequency: 399); dl: (Len: 9)),
(fc: (Frequency: 79); dl: (Len: 9)), (fc: (Frequency: 335); dl: (Len: 9)), (fc: (Frequency: 207); dl: (Len: 9)),
(fc: (Frequency: 463); dl: (Len: 9)), (fc: (Frequency: 47); dl: (Len: 9)), (fc: (Frequency: 303); dl: (Len: 9)),
(fc: (Frequency: 175); dl: (Len: 9)), (fc: (Frequency: 431); dl: (Len: 9)), (fc: (Frequency: 111); dl: (Len: 9)),
(fc: (Frequency: 367); dl: (Len: 9)), (fc: (Frequency: 239); dl: (Len: 9)), (fc: (Frequency: 495); dl: (Len: 9)),
(fc: (Frequency: 31); dl: (Len: 9)), (fc: (Frequency: 287); dl: (Len: 9)), (fc: (Frequency: 159); dl: (Len: 9)),
(fc: (Frequency: 415); dl: (Len: 9)), (fc: (Frequency: 95); dl: (Len: 9)), (fc: (Frequency: 351); dl: (Len: 9)),
(fc: (Frequency: 223); dl: (Len: 9)), (fc: (Frequency: 479); dl: (Len: 9)), (fc: (Frequency: 63); dl: (Len: 9)),
(fc: (Frequency: 319); dl: (Len: 9)), (fc: (Frequency: 191); dl: (Len: 9)), (fc: (Frequency: 447); dl: (Len: 9)),
(fc: (Frequency: 127); dl: (Len: 9)), (fc: (Frequency: 383); dl: (Len: 9)), (fc: (Frequency: 255); dl: (Len: 9)),
(fc: (Frequency: 511); dl: (Len: 9)), (fc: (Frequency: 0); dl: (Len: 7)), (fc: (Frequency: 64); dl: (Len: 7)),
(fc: (Frequency: 32); dl: (Len: 7)), (fc: (Frequency: 96); dl: (Len: 7)), (fc: (Frequency: 16); dl: (Len: 7)),
(fc: (Frequency: 80); dl: (Len: 7)), (fc: (Frequency: 48); dl: (Len: 7)), (fc: (Frequency: 112); dl: (Len: 7)),
(fc: (Frequency: 8); dl: (Len: 7)), (fc: (Frequency: 72); dl: (Len: 7)), (fc: (Frequency: 40); dl: (Len: 7)),
(fc: (Frequency: 104); dl: (Len: 7)), (fc: (Frequency: 24); dl: (Len: 7)), (fc: (Frequency: 88); dl: (Len: 7)),
(fc: (Frequency: 56); dl: (Len: 7)), (fc: (Frequency: 120); dl: (Len: 7)), (fc: (Frequency: 4); dl: (Len: 7)),
(fc: (Frequency: 68); dl: (Len: 7)), (fc: (Frequency: 36); dl: (Len: 7)), (fc: (Frequency: 100); dl: (Len: 7)),
(fc: (Frequency: 20); dl: (Len: 7)), (fc: (Frequency: 84); dl: (Len: 7)), (fc: (Frequency: 52); dl: (Len: 7)),
(fc: (Frequency: 116); dl: (Len: 7)), (fc: (Frequency: 3); dl: (Len: 8)), (fc: (Frequency: 131); dl: (Len: 8)),
(fc: (Frequency: 67); dl: (Len: 8)), (fc: (Frequency: 195); dl: (Len: 8)), (fc: (Frequency: 35); dl: (Len: 8)),
(fc: (Frequency: 163); dl: (Len: 8)), (fc: (Frequency: 99); dl: (Len: 8)), (fc: (Frequency: 227); dl: (Len: 8))
);
// The static distance tree. (Actually a trivial tree since all lens use 5 Bits.)
StaticDescriptorTree: array[0..D_CODES - 1] of TTreeEntry = (
(fc: (Frequency: 0); dl: (Len: 5)), (fc: (Frequency: 16); dl: (Len: 5)), (fc: (Frequency: 8); dl: (Len: 5)),
(fc: (Frequency: 24); dl: (Len: 5)), (fc: (Frequency: 4); dl: (Len: 5)), (fc: (Frequency: 20); dl: (Len: 5)),
(fc: (Frequency: 12); dl: (Len: 5)), (fc: (Frequency: 28); dl: (Len: 5)), (fc: (Frequency: 2); dl: (Len: 5)),
(fc: (Frequency: 18); dl: (Len: 5)), (fc: (Frequency: 10); dl: (Len: 5)), (fc: (Frequency: 26); dl: (Len: 5)),
(fc: (Frequency: 6); dl: (Len: 5)), (fc: (Frequency: 22); dl: (Len: 5)), (fc: (Frequency: 14); dl: (Len: 5)),
(fc: (Frequency: 30); dl: (Len: 5)), (fc: (Frequency: 1); dl: (Len: 5)), (fc: (Frequency: 17); dl: (Len: 5)),
(fc: (Frequency: 9); dl: (Len: 5)), (fc: (Frequency: 25); dl: (Len: 5)), (fc: (Frequency: 5); dl: (Len: 5)),
(fc: (Frequency: 21); dl: (Len: 5)), (fc: (Frequency: 13); dl: (Len: 5)), (fc: (Frequency: 29); dl: (Len: 5)),
(fc: (Frequency: 3); dl: (Len: 5)), (fc: (Frequency: 19); dl: (Len: 5)), (fc: (Frequency: 11); dl: (Len: 5)),
(fc: (Frequency: 27); dl: (Len: 5)), (fc: (Frequency: 7); dl: (Len: 5)), (fc: (Frequency: 23); dl: (Len: 5))
);
// Distance codes. The first 256 values correspond to the distances 3 .. 258, the last 256 values correspond to the
// top 8 Bits of the 15 bit distances.
DistanceCode: array[0..DIST_CODE_LEN - 1] of Byte = (
0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8,
8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 16, 17,
18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22,
23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
);
// length code for each normalized match length (0 = MIN_MATCH)
LengthCode: array[0..MAX_MATCH - MIN_MATCH] of Byte = (
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12,
13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28
);
// first normalized length for each code (0 = MIN_MATCH)
BaseLength: array[0..LENGTH_CODES - 1] of Integer = (
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
64, 80, 96, 112, 128, 160, 192, 224, 0
);
// first normalized distance for each code (0 = distance of 1)
BaseDistance: array[0..D_CODES - 1] of Integer = (
0, 1, 2, 3, 4, 6, 8, 12, 16, 24,
32, 48, 64, 96, 128, 192, 256, 384, 512, 768,
1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576
);
MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1);
MAX_BL_BITS = 7; // bit length codes must not exceed MAX_BL_BITS bits
END_BLOCK = 256; // end of block literal code
REP_3_6 = 16; // repeat previous bit length 3-6 times (2 Bits of repeat count)
REPZ_3_10 = 17; // repeat a zero length 3-10 times (3 Bits of repeat count)
REPZ_11_138 = 18; // repeat a zero length 11-138 times (7 Bits of repeat count)
// extra bits for each length code
ExtraLengthBits: array[0..LENGTH_CODES - 1] of Integer = (
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0
);
// extra bits for each distance code
ExtraDistanceBits: array[0..D_CODES-1] of Integer = (
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10 ,10, 11, 11, 12, 12, 13, 13
);
// extra bits for each bit length code
ExtraBitLengthBits: array[0..BL_CODES - 1] of Integer = (
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7
);
// The lengths of the bit length codes are sent in order of decreasing probability,
// to avoid transmitting the lengths for unused bit length codes.
BitLengthOrder: array[0..BL_CODES - 1] of Byte = (
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
);
// Number of bits used within BitsBuffer. (BitsBuffer might be implemented on more than 16 bits on some systems.)
BufferSize = 16;
StaticLiteralDescriptor: TStaticTreeDescriptor = (
StaticTree: @StaticLiteralTree; // pointer to array of TTreeEntry
ExtraBits: @ExtraLengthBits; // pointer to array of integer
ExtraBase: LITERALS + 1;
Elements: L_CODES;
MaxLength: MAX_BITS
);
StaticDistanceDescriptor: TStaticTreeDescriptor = (
StaticTree: @StaticDescriptorTree;
ExtraBits: @ExtraDistanceBits;
ExtraBase: 0;
Elements: D_CODES;
MaxLength: MAX_BITS
);
StaticBitLengthDescriptor: TStaticTreeDescriptor = (
StaticTree: nil;
ExtraBits: @ExtraBitLengthBits;
ExtraBase: 0;
Elements: BL_CODES;
MaxLength: MAX_BL_BITS
);
SMALLEST = 1; // index within the heap array of least frequent node in the Huffman tree
//----------------------------------------------------------------------------------------------------------------------
procedure SendBits(var S: TDeflateState; Value: Word; Length: Integer);
// Value contains what is to be sent
// Length is the number of bits to send
begin
// If there's not enough room in BitsBuffer use (valid) bits from BitsBuffer and
// (16 - ValidBits) bits from Value, leaving (width - (16 - ValidBits)) unused bits in Value.
{$ifopt Q+} {$Q-} {$define OverflowCheck} {$endif}
{$ifopt R+} {$R-} {$define RangeCheck} {$endif}
if (S.ValidBits > Integer(BufferSize) - Length) then
begin
S.BitsBuffer := S.BitsBuffer or (Value shl S.ValidBits);
S.PendingBuffer[S.Pending] := S.BitsBuffer and $FF;
Inc(S.Pending);
S.PendingBuffer[S.Pending] := S.BitsBuffer shr 8;
Inc(S.Pending);
S.BitsBuffer := Value shr (BufferSize - S.ValidBits);
Inc(S.ValidBits, Length - BufferSize);
end
else
begin
S.BitsBuffer := S.BitsBuffer or (Value shl S.ValidBits);
Inc(S.ValidBits, Length);
end;
{$ifdef OverflowCheck} {$Q+} {$undef OverflowCheck} {$endif}
{$ifdef RangeCheck} {$R+} {$undef RangeCheck} {$endif}
end;
//----------------------------------------------------------------------------------------------------------------------