This repository has been archived by the owner on Jul 3, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 56
/
BigGAN.py
638 lines (533 loc) · 28 KB
/
BigGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
#from https://github.com/ajbrock/BigGAN-PyTorch (MIT license)
# some modifications in class Generator and G_D
# new class "Unet_Discriminator" based on original class "Discriminator"
import numpy as np
import math
import functools
import torch
import torch.nn as nn
from torch.nn import init
import torch.optim as optim
import torch.nn.functional as F
from torch.nn import Parameter as P
import layers
import utils
import copy
from matplotlib import pyplot as plt
# Architectures for G
# Attention is passed in in the format '32_64' to mean applying an attention
# block at both resolution 32x32 and 64x64.
def G_arch(ch=64, attention='64', ksize='333333', dilation='111111'):
arch = {}
arch[256] = {'in_channels' : [ch * item for item in [16, 16, 8, 8, 4, 2]],
'out_channels' : [ch * item for item in [16, 8, 8, 4, 2, 1]],
'upsample' : [True] * 6,
'resolution' : [8, 16, 32, 64, 128, 256],
'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')])
for i in range(3,9)}}
arch[128] = {'in_channels' : [ch * item for item in [16, 16, 8, 4, 2]],
'out_channels' : [ch * item for item in [16, 8, 4, 2, 1]],
'upsample' : [True] * 5,
'resolution' : [8, 16, 32, 64, 128],
'attention' : {2**i: (2**i in [int(item) for item in attention.split('_')])
for i in range(3,8)}}
return arch
class Generator(nn.Module):
def __init__(self, G_ch=64, dim_z=128, bottom_width=4, resolution=128,
G_kernel_size=3, G_attn='64', n_classes=1000,
num_G_SVs=1, num_G_SV_itrs=1,
G_shared=True, shared_dim=0, hier=False,
cross_replica=False, mybn=False,
G_activation=nn.ReLU(inplace=False),
G_lr=5e-5, G_B1=0.0, G_B2=0.999, adam_eps=1e-8,
BN_eps=1e-5, SN_eps=1e-12, G_mixed_precision=False, G_fp16=False,
G_init='ortho', skip_init=False, no_optim=False,
G_param='SN', norm_style='bn',
**kwargs):
super(Generator, self).__init__()
# Channel width mulitplier
self.ch = G_ch
# Dimensionality of the latent space
self.dim_z = dim_z
# The initial spatial dimensions
self.bottom_width = bottom_width
# Resolution of the output
self.resolution = resolution
# Kernel size?
self.kernel_size = G_kernel_size
# Attention?
self.attention = G_attn
# number of classes, for use in categorical conditional generation
self.n_classes = n_classes
# Use shared embeddings?
self.G_shared = G_shared
# Dimensionality of the shared embedding? Unused if not using G_shared
self.shared_dim = shared_dim if shared_dim > 0 else dim_z
# Hierarchical latent space?
self.hier = hier
# Cross replica batchnorm?
self.cross_replica = cross_replica
# Use my batchnorm?
self.mybn = mybn
# nonlinearity for residual blocks
self.activation = G_activation
# Initialization style
self.init = G_init
# Parameterization style
self.G_param = G_param
# Normalization style
self.norm_style = norm_style
# Epsilon for BatchNorm?
self.BN_eps = BN_eps
# Epsilon for Spectral Norm?
self.SN_eps = SN_eps
# fp16?
self.fp16 = G_fp16
# Architecture dict
self.arch = G_arch(self.ch, self.attention)[resolution]
self.unconditional = kwargs["unconditional"]
# If using hierarchical latents, adjust z
if self.hier:
# Number of places z slots into
self.num_slots = len(self.arch['in_channels']) + 1
self.z_chunk_size = (self.dim_z // self.num_slots)
if not self.unconditional:
self.dim_z = self.z_chunk_size * self.num_slots
else:
self.num_slots = 1
self.z_chunk_size = 0
# Which convs, batchnorms, and linear layers to use
if self.G_param == 'SN':
self.which_conv = functools.partial(layers.SNConv2d,
kernel_size=3, padding=1,
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
eps=self.SN_eps)
self.which_linear = functools.partial(layers.SNLinear,
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
eps=self.SN_eps)
else:
self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1)
self.which_linear = nn.Linear
# We use a non-spectral-normed embedding here regardless;
# For some reason applying SN to G's embedding seems to randomly cripple G
self.which_embedding = nn.Embedding
if self.unconditional:
bn_linear = nn.Linear
input_size = self.dim_z + (self.shared_dim if self.G_shared else 0 )
else:
bn_linear = (functools.partial(self.which_linear, bias = False) if self.G_shared
else self.which_embedding)
input_size = (self.shared_dim + self.z_chunk_size if self.G_shared
else self.n_classes)
self.which_bn = functools.partial(layers.ccbn,
which_linear=bn_linear,
cross_replica=self.cross_replica,
mybn=self.mybn,
input_size=input_size,
norm_style=self.norm_style,
eps=self.BN_eps,
self_modulation = self.unconditional)
# Prepare model
# If not using shared embeddings, self.shared is just a passthrough
self.shared = (self.which_embedding(n_classes, self.shared_dim) if G_shared
else layers.identity())
# First linear layer
if self.unconditional:
self.linear = self.which_linear(self.dim_z, self.arch['in_channels'][0] * (self.bottom_width **2))
else:
self.linear = self.which_linear(self.dim_z // self.num_slots,
self.arch['in_channels'][0] * (self.bottom_width **2))
# self.blocks is a doubly-nested list of modules, the outer loop intended
# to be over blocks at a given resolution (resblocks and/or self-attention)
# while the inner loop is over a given block
self.blocks = []
for index in range(len(self.arch['out_channels'])):
self.blocks += [[layers.GBlock(in_channels=self.arch['in_channels'][index],
out_channels=self.arch['out_channels'][index],
which_conv=self.which_conv,
which_bn=self.which_bn,
activation=self.activation,
upsample=(functools.partial(F.interpolate, scale_factor=2)
if self.arch['upsample'][index] else None))]]
# If attention on this block, attach it to the end
if self.arch['attention'][self.arch['resolution'][index]]:
print('Adding attention layer in G at resolution %d' % self.arch['resolution'][index])
self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index], self.which_conv)]
# Turn self.blocks into a ModuleList so that it's all properly registered.
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
# output layer: batchnorm-relu-conv.
# Consider using a non-spectral conv here
self.output_layer = nn.Sequential(layers.bn(self.arch['out_channels'][-1],
cross_replica=self.cross_replica,
mybn=self.mybn),
self.activation,
self.which_conv(self.arch['out_channels'][-1], 3))
# Initialize weights. Optionally skip init for testing.
if not skip_init:
self.init_weights()
# Set up optimizer
# If this is an EMA copy, no need for an optim, so just return now
if no_optim:
return
self.lr, self.B1, self.B2, self.adam_eps = G_lr, G_B1, G_B2, adam_eps
if G_mixed_precision:
print('Using fp16 adam in G...')
import utils
self.optim = utils.Adam16(params=self.parameters(), lr=self.lr,
betas=(self.B1, self.B2), weight_decay=0,
eps=self.adam_eps)
else:
self.optim = optim.Adam(params=self.parameters(), lr=self.lr,
betas=(self.B1, self.B2), weight_decay=0,
eps=self.adam_eps)
# LR scheduling, left here for forward compatibility
# self.lr_sched = {'itr' : 0}# if self.progressive else {}
# self.j = 0
# Initialize
def init_weights(self):
self.param_count = 0
for module in self.modules():
if (isinstance(module, nn.Conv2d)
or isinstance(module, nn.Linear)
or isinstance(module, nn.Embedding)):
if self.init == 'ortho':
init.orthogonal_(module.weight)
elif self.init == 'N02':
init.normal_(module.weight, 0, 0.02)
elif self.init in ['glorot', 'xavier']:
init.xavier_uniform_(module.weight)
else:
print('Init style not recognized...')
self.param_count += sum([p.data.nelement() for p in module.parameters()])
print('Param count for G''s initialized parameters: %d' % self.param_count)
# Note on this forward function: we pass in a y vector which has
# already been passed through G.shared to enable easy class-wise
# interpolation later. If we passed in the one-hot and then ran it through
# G.shared in this forward function, it would be harder to handle.
def forward(self, z, y ):
# If hierarchical, concatenate zs and ys
if self.hier:
# faces
if self.unconditional:
ys = [z for _ in range(self.num_slots)]
else:
zs = torch.split(z, self.z_chunk_size, 1)
z = zs[0]
ys = [torch.cat([y, item], 1) for item in zs[1:]]
else:
if self.unconditional:
ys = [None] * len(self.blocks)
else:
ys = [y] * len(self.blocks)
# First linear layer
h = self.linear(z)
# Reshape
h = h.view(h.size(0), -1, self.bottom_width, self.bottom_width)
# Loop over blocks
for index, blocklist in enumerate(self.blocks):
# Second inner loop in case block has multiple layers
for block in blocklist:
h = block(h, ys[index])
# Apply batchnorm-relu-conv-tanh at output
return torch.tanh(self.output_layer(h))
# Discriminator architecture, same paradigm as G's above
def D_arch(ch=64, attention='64',ksize='333333', dilation='111111'):
arch = {}
arch[256] = {'in_channels' : [3] + [ch*item for item in [1, 2, 4, 8, 8, 16]],
'out_channels' : [item * ch for item in [1, 2, 4, 8, 8, 16, 16]],
'downsample' : [True] * 6 + [False],
'resolution' : [128, 64, 32, 16, 8, 4, 4 ],
'attention' : {2**i: 2**i in [int(item) for item in attention.split('_')]
for i in range(2,8)}}
arch[128] = {'in_channels' : [3] + [ch*item for item in [1, 2, 4, 8, 16]],
'out_channels' : [item * ch for item in [1, 2, 4, 8, 16, 16]],
'downsample' : [True] * 5 + [False],
'resolution' : [64, 32, 16, 8, 4, 4],
'attention' : {2**i: 2**i in [int(item) for item in attention.split('_')]
for i in range(2,8)}}
return arch
def D_unet_arch(ch=64, attention='64',ksize='333333', dilation='111111',out_channel_multiplier=1):
arch = {}
n = 2
ocm = out_channel_multiplier
# covers bigger perceptual fields
arch[128]= {'in_channels' : [3] + [ch*item for item in [1, 2, 4, 8, 16, 8*n, 4*2, 2*2, 1*2,1]],
'out_channels' : [item * ch for item in [1, 2, 4, 8, 16, 8, 4, 2, 1, 1]],
'downsample' : [True]*5 + [False]*5,
'upsample': [False]*5+ [True] *5,
'resolution' : [64, 32, 16, 8, 4, 8, 16, 32, 64, 128],
'attention' : {2**i: 2**i in [int(item) for item in attention.split('_')]
for i in range(2,11)}}
arch[256] = {'in_channels' : [3] + [ch*item for item in [1, 2, 4, 8, 8, 16, 8*2, 8*2, 4*2, 2*2, 1*2 , 1 ]],
'out_channels' : [item * ch for item in [1, 2, 4, 8, 8, 16, 8, 8, 4, 2, 1, 1 ]],
'downsample' : [True] *6 + [False]*6 ,
'upsample': [False]*6 + [True] *6,
'resolution' : [128, 64, 32, 16, 8, 4, 8, 16, 32, 64, 128, 256 ],
'attention' : {2**i: 2**i in [int(item) for item in attention.split('_')]
for i in range(2,13)}}
return arch
class Unet_Discriminator(nn.Module):
def __init__(self, D_ch=64, D_wide=True, resolution=128,
D_kernel_size=3, D_attn='64', n_classes=1000,
num_D_SVs=1, num_D_SV_itrs=1, D_activation=nn.ReLU(inplace=False),
D_lr=2e-4, D_B1=0.0, D_B2=0.999, adam_eps=1e-8,
SN_eps=1e-12, output_dim=1, D_mixed_precision=False, D_fp16=False,
D_init='ortho', skip_init=False, D_param='SN', decoder_skip_connection = True, **kwargs):
super(Unet_Discriminator, self).__init__()
# Width multiplier
self.ch = D_ch
# Use Wide D as in BigGAN and SA-GAN or skinny D as in SN-GAN?
self.D_wide = D_wide
# Resolution
self.resolution = resolution
# Kernel size
self.kernel_size = D_kernel_size
# Attention?
self.attention = D_attn
# Number of classes
self.n_classes = n_classes
# Activation
self.activation = D_activation
# Initialization style
self.init = D_init
# Parameterization style
self.D_param = D_param
# Epsilon for Spectral Norm?
self.SN_eps = SN_eps
# Fp16?
self.fp16 = D_fp16
if self.resolution==128:
self.save_features = [0,1,2,3,4]
elif self.resolution==256:
self.save_features = [0,1,2,3,4,5]
self.out_channel_multiplier = 1#4
# Architecture
self.arch = D_unet_arch(self.ch, self.attention , out_channel_multiplier = self.out_channel_multiplier )[resolution]
self.unconditional = kwargs["unconditional"]
# Which convs, batchnorms, and linear layers to use
# No option to turn off SN in D right now
if self.D_param == 'SN':
self.which_conv = functools.partial(layers.SNConv2d,
kernel_size=3, padding=1,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
self.which_linear = functools.partial(layers.SNLinear,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
self.which_embedding = functools.partial(layers.SNEmbedding,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
# Prepare model
# self.blocks is a doubly-nested list of modules, the outer loop intended
# to be over blocks at a given resolution (resblocks and/or self-attention)
self.blocks = []
for index in range(len(self.arch['out_channels'])):
if self.arch["downsample"][index]:
self.blocks += [[layers.DBlock(in_channels=self.arch['in_channels'][index],
out_channels=self.arch['out_channels'][index],
which_conv=self.which_conv,
wide=self.D_wide,
activation=self.activation,
preactivation=(index > 0),
downsample=(nn.AvgPool2d(2) if self.arch['downsample'][index] else None))]]
elif self.arch["upsample"][index]:
upsample_function = (functools.partial(F.interpolate, scale_factor=2, mode="nearest") #mode=nearest is default
if self.arch['upsample'][index] else None)
self.blocks += [[layers.GBlock2(in_channels=self.arch['in_channels'][index],
out_channels=self.arch['out_channels'][index],
which_conv=self.which_conv,
#which_bn=self.which_bn,
activation=self.activation,
upsample= upsample_function, skip_connection = True )]]
# If attention on this block, attach it to the end
attention_condition = index < 5
if self.arch['attention'][self.arch['resolution'][index]] and attention_condition: #index < 5
print('Adding attention layer in D at resolution %d' % self.arch['resolution'][index])
print("index = ", index)
self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index],
self.which_conv)]
# Turn self.blocks into a ModuleList so that it's all properly registered.
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
last_layer = nn.Conv2d(self.ch*self.out_channel_multiplier,1,kernel_size=1)
self.blocks.append(last_layer)
#
# Linear output layer. The output dimension is typically 1, but may be
# larger if we're e.g. turning this into a VAE with an inference output
self.linear = self.which_linear(self.arch['out_channels'][-1], output_dim)
self.linear_middle = self.which_linear(16*self.ch, output_dim)
# Embedding for projection discrimination
#if not kwargs["agnostic_unet"] and not kwargs["unconditional"]:
# self.embed = self.which_embedding(self.n_classes, self.arch['out_channels'][-1]+extra)
if not kwargs["unconditional"]:
self.embed_middle = self.which_embedding(self.n_classes, 16*self.ch)
self.embed = self.which_embedding(self.n_classes, self.arch['out_channels'][-1])
# Initialize weights
if not skip_init:
self.init_weights()
###
print("_____params______")
for name, param in self.named_parameters():
print(name, param.size())
# Set up optimizer
self.lr, self.B1, self.B2, self.adam_eps = D_lr, D_B1, D_B2, adam_eps
if D_mixed_precision:
print('Using fp16 adam in D...')
import utils
self.optim = utils.Adam16(params=self.parameters(), lr=self.lr,
betas=(self.B1, self.B2), weight_decay=0, eps=self.adam_eps)
else:
self.optim = optim.Adam(params=self.parameters(), lr=self.lr,
betas=(self.B1, self.B2), weight_decay=0, eps=self.adam_eps)
# LR scheduling, left here for forward compatibility
# self.lr_sched = {'itr' : 0}# if self.progressive else {}
# self.j = 0
# Initialize
def init_weights(self):
self.param_count = 0
for module in self.modules():
if (isinstance(module, nn.Conv2d)
or isinstance(module, nn.Linear)
or isinstance(module, nn.Embedding)):
if self.init == 'ortho':
init.orthogonal_(module.weight)
elif self.init == 'N02':
init.normal_(module.weight, 0, 0.02)
elif self.init in ['glorot', 'xavier']:
init.xavier_uniform_(module.weight)
else:
print('Init style not recognized...')
self.param_count += sum([p.data.nelement() for p in module.parameters()])
print('Param count for D''s initialized parameters: %d' % self.param_count)
def forward(self, x, y=None):
# Stick x into h for cleaner for loops without flow control
h = x
residual_features = []
residual_features.append(x)
# Loop over blocks
for index, blocklist in enumerate(self.blocks[:-1]):
if self.resolution == 128:
if index==6 :
h = torch.cat((h,residual_features[4]),dim=1)
elif index==7:
h = torch.cat((h,residual_features[3]),dim=1)
elif index==8:#
h = torch.cat((h,residual_features[2]),dim=1)
elif index==9:#
h = torch.cat((h,residual_features[1]),dim=1)
if self.resolution == 256:
if index==7:
h = torch.cat((h,residual_features[5]),dim=1)
elif index==8:
h = torch.cat((h,residual_features[4]),dim=1)
elif index==9:#
h = torch.cat((h,residual_features[3]),dim=1)
elif index==10:#
h = torch.cat((h,residual_features[2]),dim=1)
elif index==11:
h = torch.cat((h,residual_features[1]),dim=1)
for block in blocklist:
h = block(h)
if index in self.save_features[:-1]:
residual_features.append(h)
if index==self.save_features[-1]:
# Apply global sum pooling as in SN-GAN
h_ = torch.sum(self.activation(h), [2, 3])
# Get initial class-unconditional output
bottleneck_out = self.linear_middle(h_)
# Get projection of final featureset onto class vectors and add to evidence
if self.unconditional:
projection = 0
else:
# this is the bottleneck classifier c
emb_mid = self.embed_middle(y)
projection = torch.sum(emb_mid * h_, 1, keepdim=True)
bottleneck_out = bottleneck_out + projection
out = self.blocks[-1](h)
if self.unconditional:
proj = 0
else:
emb = self.embed(y)
emb = emb.view(emb.size(0),emb.size(1),1,1).expand_as(h)
proj = torch.sum(emb * h, 1, keepdim=True)
################
out = out + proj
out = out.view(out.size(0),1,self.resolution,self.resolution)
return out, bottleneck_out
# Parallelized G_D to minimize cross-gpu communication
# Without this, Generator outputs would get all-gathered and then rebroadcast.
class G_D(nn.Module):
def __init__(self, G, D, config):
super(G_D, self).__init__()
self.G = G
self.D = D
self.config = config
def forward(self, z, gy, x=None, dy=None, train_G=False, return_G_z=False,
split_D=False, dw1=[],dw2=[], reference_x = None, mixup = False, mixup_only = False, target_map=None):
if mixup:
gy = dy
#why? so the mixup samples consist of same class
# If training G, enable grad tape
with torch.set_grad_enabled(train_G):
G_z = self.G(z, self.G.shared(gy))
# Cast as necessary
if self.G.fp16 and not self.D.fp16:
G_z = G_z.float()
if self.D.fp16 and not self.G.fp16:
G_z = G_z.half()
if mixup:
initial_x_size = x.size(0)
mixed = target_map*x+(1-target_map)*G_z
mixed_y = dy
if not mixup_only:
# we get here in the cutmix cons extra case
D_input = torch.cat([G_z, x], 0) if x is not None else G_z
D_class = torch.cat([gy, dy], 0) if dy is not None else gy
dmap = torch.tensor([])
if mixup:
#we get here in the cutmix "consistency loss and augmentation" case, if "mixup" is true for the current round (depends on p mixup)
D_input = torch.cat([D_input, mixed], 0)
if self.config["dataset"]!="coco_animals":
D_class = torch.cat([D_class.float(), mixed_y.float()], 0)
else:
D_class = torch.cat([D_class.long(), mixed_y.long()], 0)
else:
#not reached in cutmix "consistency loss and augmentation"
D_input = mixed
D_class = mixed_y
dmap = torch.tensor([])
del G_z
del x
G_z = None
x = None
D_out, D_middle = self.D(D_input, D_class)
del D_input
del D_class
if x is not None:
if not mixup:
out = torch.split(D_out, [G_z.shape[0], x.shape[0]]) # D_fake, D_real
else:
out = torch.split(D_out, [G_z.shape[0], x.shape[0], mixed.shape[0]]) # D_fake, D_real, D_mixed
out = out + (G_z,)
if mixup:
out = out + (mixed,)
if not mixup:
D_middle = torch.split(D_middle, [G_z.shape[0], x.shape[0]]) # D_middle_fake, D_middle_real
else:
D_middle = torch.split(D_middle, [G_z.shape[0], x.shape[0] , mixed.shape[0]])
out = out + D_middle
###return target map as well
if mixup:
out = out + (target_map,)
return out
else:
#in mixup# you arrive here
out = (D_out,)
if return_G_z:
out = out + (G_z,)
if mixup_only:
out = out + (mixed,)
out = out + (D_middle,)
##return target map as well
if mixup:
out = out + (target_map,)
return out