-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_GAP.py
543 lines (466 loc) · 22.6 KB
/
run_GAP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""
from __future__ import absolute_import
import argparse
import csv
import logging
import os
import random
import sys
from io import open
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.nn import CrossEntropyLoss
from torch.utils.data.distributed import DistributedSampler
from torch import nn
from tqdm import tqdm, trange
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from pytorch_pretrained_bert.modeling import (BertForMultipleChoice, BertPreTrainedModel, BertModel, BertConfig, WEIGHTS_NAME, CONFIG_NAME)
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
from pytorch_pretrained_bert.tokenization import BertTokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
class BertForTwoChoices(BertPreTrainedModel):
"""BERT model for two choices input converted to three choices tasks.
This module is composed of the BERT model with a conv layer to convert the output channels and a
linear layer on top of the pooled output.
Params:
`config`: a BertConfig class instance with the configuration to build a new model.
`num_choices`: the number of classes for the classifier. Default = 2.
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
`attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
input sequence length in the current batch. It's the mask that we typically use for attention when
a batch has varying length sentences.
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_choices].
Outputs:
if `labels` is not `None`:
Outputs the CrossEntropy classification loss of the output with the labels.
if `labels` is `None`:
Outputs the classification logits of shape [batch_size, num_labels].
"""
def __init__(self, config, num_choices_in, num_choices_out):
super(BertForTwoChoices, self).__init__(config)
self.num_choices_in = num_choices_in
self.num_choices_out = num_choices_out
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.conv = nn.Conv1d(in_channels=num_choices_in, out_channels=num_choices_out, kernel_size=1)
self.relu = nn.ReLU()
self.classifier = nn.Linear(config.hidden_size, 1)
self.apply(self.init_bert_weights)
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
batch_size = input_ids.size(0)
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1))
_, pooled_output = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask, output_all_encoded_layers=False)
pooled_output = self.dropout(pooled_output)
pooled_output = self.relu(self.conv(pooled_output.view(1, self.num_choices_in, -1)))
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, self.num_choices_out)
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
return loss
else:
return reshaped_logits
class GAPExample(object):
"""A single training/test example for the GAP dataset."""
def __init__(self,
GAP_id,
text,
pronoun,
A,
B,
n_classes,
A_coref=None,
B_coref=None):
self.id = GAP_id
self.text = text
self.pronoun = pronoun
self.candidates = [A, B]
if n_classes == 3:
self.candidates.append(u'neither')
if not A_coref or not B_coref:
self.label = None
return
if A_coref == u'TRUE' and B_coref == u'TRUE':
assert 'BOOOOOM'
elif A_coref == u'TRUE' and B_coref == u'FALSE':
label = 0
elif A_coref == u'FALSE' and B_coref == u'TRUE':
label = 1
elif A_coref == u'FALSE' and B_coref == u'FALSE':
label = 2
self.label = label
def __str__(self):
return self.__repr__()
def __repr__(self):
l = [
"id: {}".format(self.id),
"text: {}".format(self.text),
"pronoun: {}".format(self.pronoun),
"A: {}".format(self.candidates[0]),
"B: {}".format(self.candidates[1]),
]
if self.label is not None:
l.append("label: {}".format(self.label))
return ", ".join(l)
class InputFeatures(object):
def __init__(self,
example_id,
choices_features,
label
):
self.example_id = example_id
self.choices_features = [
{
'input_ids': input_ids,
'input_mask': input_mask,
'segment_ids': segment_ids
}
for _, input_ids, input_mask, segment_ids in choices_features
]
self.label = label
def read_GAP_examples(input_file, is_training, n_classes):
with open(input_file, 'r', encoding='utf-8') as f:
reader = csv.reader(f, delimiter='\t')
lines = []
for i, line in enumerate(reader):
if sys.version_info[0] == 2:
line = list(unicode(cell, 'utf-8') for cell in line)
lines.append(line)
if is_training and u'A-coref' not in lines[0] and u'B-coref' not in lines[0]:
raise ValueError(
"For training, the input file must contain a A-coref and B-coref column."
)
examples = [
GAPExample(
GAP_id=line[0],
text=line[1],
pronoun=line[2],
A=line[4],
B=line[7],
n_classes=n_classes,
A_coref=line[6] if is_training else None,
B_coref=line[9] if is_training else None)
for line in lines[1:] # we skip the line with the column names
]
return examples
def convert_examples_to_features(examples, tokenizer, max_seq_length,
is_training):
"""Loads a data file into a list of `InputBatch`s."""
# Swag is a multiple choice task. To perform this task using Bert,
# we will use the formatting proposed in "Improving Language
# Understanding by Generative Pre-Training" and suggested by
# @jacobdevlin-google in this issue
# https://github.com/google-research/bert/issues/38.
#
# Each choice will correspond to a sample on which we run the
# inference. For a given Swag example, we will create the 3
# following inputs:
# - [CLS] text [SEP] pronoun candidate_A [SEP]
# - [CLS] text [SEP] pronoun candidate_B [SEP]
# - [CLS] text [SEP] pronoun 'neither' [SEP]
# The model will output a single value for each input. To get the
# final decision of the model, we will run a softmax over these 3
# outputs.
features = []
lens = []
for example_index, example in enumerate(examples):
text_tokens = tokenizer.tokenize(example.text)
pronoun_tokens = tokenizer.tokenize(example.pronoun)
lens.append(len(example.text))
choices_features = []
for index, candidate in enumerate(example.candidates):
# We create a copy of the text tokens in order to be
# able to shrink it according to pronoun
text_tokens_choice = text_tokens[:]
choice_tokens = pronoun_tokens + tokenizer.tokenize(candidate)
# Modifies `text_tokens_choice` and `choice_tokens` in
# place so that the total length is less than the
# specified length. Account for [CLS], [SEP], [SEP] with
# "- 3"
_truncate_seq_pair(text_tokens_choice, choice_tokens, max_seq_length - 3)
tokens = ["[CLS]"] + text_tokens_choice + ["[SEP]"] + choice_tokens + ["[SEP]"]
segment_ids = [0] * (len(text_tokens_choice) + 2) + [1] * (len(choice_tokens) + 1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
padding = [0] * (max_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
choices_features.append((tokens, input_ids, input_mask, segment_ids))
label = example.label
if example_index < 4:
logger.info("*** Example ***")
logger.info("id: {}".format(example.id))
for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features):
logger.info("choice: {}".format(choice_idx))
logger.info("tokens: {}".format(' '.join(tokens)))
logger.info("input_ids: {}".format(' '.join(map(str, input_ids))))
logger.info("input_mask: {}".format(' '.join(map(str, input_mask))))
logger.info("segment_ids: {}".format(' '.join(map(str, segment_ids))))
if is_training:
logger.info("label: {}".format(label))
features.append(
InputFeatures(
example_id = example.id,
choices_features = choices_features,
label = label
)
)
print('min sequence len {}'.format(min(lens)))
print('max sequence len {}'.format(max(lens)))
print('avg sequence len {}'.format(sum(lens)/len(lens)))
return features
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
def select_field(features, field):
return [
[
choice[field]
for choice in feature.choices_features
]
for feature in features
]
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .csv files (or other data files) for the task.")
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
"bert-base-multilingual-cased, bert-base-chinese.")
parser.add_argument("--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints will be written.")
## Other parameters
parser.add_argument("--max_seq_length",
default=512,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_lower_case",
action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--train_batch_size",
default=1,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=1,
type=int,
help="Total batch size for eval.")
parser.add_argument("--n_classes",
default=3,
type=int,
help="Number of classes to pass to BERT. (2 or 3)")
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=1000,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
# Output directory
if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
train_examples = read_GAP_examples(os.path.join(args.data_dir, 'gap-test.tsv'), is_training=True, n_classes=args.n_classes)
eval_examples = read_GAP_examples(os.path.join(args.data_dir, 'gap-validation.tsv'), is_training=True, n_classes=args.n_classes)
num_train_optimization_steps = int(len(train_examples) / args.train_batch_size) * args.num_train_epochs
# Prepare model
if args.n_classes == 3:
model = BertForMultipleChoice.from_pretrained(args.bert_model,
cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_-1'),
num_choices=3)
else:
model = BertForTwoChoices.from_pretrained(args.bert_model,
cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_-1'),
num_choices_in=2, num_choices_out=3)
model.to(device)
if n_gpu > 1:
model = torch.nn.DataParallel(model)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
# hack to remove pooler, which is not used
param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
global_step = 0
train_features = convert_examples_to_features(train_examples, tokenizer, args.max_seq_length, True)
all_input_ids = torch.tensor(select_field(train_features, 'input_ids'), dtype=torch.long)
all_input_mask = torch.tensor(select_field(train_features, 'input_mask'), dtype=torch.long)
all_segment_ids = torch.tensor(select_field(train_features, 'segment_ids'), dtype=torch.long)
all_label = torch.tensor([f.label for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
train_sampler = RandomSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
eval_features = convert_examples_to_features(eval_examples, tokenizer, args.max_seq_length, True)
all_input_ids = torch.tensor(select_field(eval_features, 'input_ids'), dtype=torch.long)
all_input_mask = torch.tensor(select_field(eval_features, 'input_mask'), dtype=torch.long)
all_segment_ids = torch.tensor(select_field(eval_features, 'segment_ids'), dtype=torch.long)
all_label = torch.tensor([f.label for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
# Training and validation loop
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
# For early stopping...
best_accuracy = 0.
patience = 0
for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
model.train()
logger.info("\n***** Running training *****")
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
loss = model(input_ids, segment_ids, input_mask, label_ids)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
loss.backward()
optimizer.step()
optimizer.zero_grad()
global_step += 1
print('Training loss {}'.format(tr_loss/step))
logger.info("\n***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
logits = model(input_ids, segment_ids, input_mask)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
tmp_eval_accuracy = accuracy(logits, label_ids)
eval_loss += tmp_eval_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0)
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
result = {'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy,
'global_step': global_step,
'loss': tr_loss/nb_tr_steps}
if eval_accuracy >= best_accuracy:
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
# Save a trained model
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
torch.save(model_to_save.state_dict(), output_model_file)
best_accuracy = eval_accuracy
patience = 0
elif patience < 4:
patience += 1
logger.info("Patience {}".format(patience))
else:
logger.info("***** Early Stopping *****")
logger.info("Best eval accuracy: {}".format(best_accuracy))
logger.info("Epoch: {}".format(epoch))
break
# Save the config
output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
with open(output_config_file, 'w') as f:
f.write(model.module.config.to_json_string())
if __name__ == "__main__":
main()