-
Notifications
You must be signed in to change notification settings - Fork 414
/
app.py
525 lines (465 loc) · 21.3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
import gc
import math
import os
import shutil
import ffmpeg
import zipfile
import gradio as gr
import torch
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
from sam2.build_sam import build_sam2
from sam2.utils.transforms import SAM2Transforms
from sam2.sam2_image_predictor import SAM2ImagePredictor
from sam2.build_sam import build_sam2_video_predictor
import cv2
def clean(Seg_Tracker):
if Seg_Tracker is not None:
predictor, inference_state, image_predictor = Seg_Tracker
predictor.reset_state(inference_state)
del predictor
del inference_state
del image_predictor
del Seg_Tracker
gc.collect()
torch.cuda.empty_cache()
return None, ({}, {}), None, None, 0, None, None, None, 0
def get_meta_from_video(Seg_Tracker, input_video, scale_slider, checkpoint):
output_dir = 'output_frames'
output_masks_dir = 'output_masks'
output_combined_dir = 'output_combined'
clear_folder(output_dir)
clear_folder(output_masks_dir)
clear_folder(output_combined_dir)
if input_video is None:
return None, ({}, {}), None, None, 0, None, None, None, 0
cap = cv2.VideoCapture(input_video)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
output_frames = int(total_frames * scale_slider)
frame_interval = max(1, total_frames // output_frames)
ffmpeg.input(input_video, hwaccel='cuda').output(
os.path.join(output_dir, '%07d.jpg'), q=2, start_number=0,
vf=rf'select=not(mod(n\,{frame_interval}))', vsync='vfr'
).run()
first_frame_path = os.path.join(output_dir, '0000000.jpg')
first_frame = cv2.imread(first_frame_path)
first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
if Seg_Tracker is not None:
del Seg_Tracker
Seg_Tracker = None
gc.collect()
torch.cuda.empty_cache()
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
if checkpoint == "tiny":
sam2_checkpoint = "checkpoints/sam2_hiera_tiny.pt"
model_cfg = "sam2_hiera_t.yaml"
elif checkpoint == "samll":
sam2_checkpoint = "checkpoints/sam2_hiera_small.pt"
model_cfg = "sam2_hiera_s.yaml"
elif checkpoint == "base-plus":
sam2_checkpoint = "checkpoints/sam2_hiera_base_plus.pt"
model_cfg = "sam2_hiera_b+.yaml"
elif checkpoint == "large":
sam2_checkpoint = "checkpoints/sam2_hiera_large.pt"
model_cfg = "sam2_hiera_l.yaml"
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda")
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
image_predictor = SAM2ImagePredictor(sam2_model)
inference_state = predictor.init_state(video_path=output_dir)
predictor.reset_state(inference_state)
return (predictor, inference_state, image_predictor), ({}, {}), first_frame_rgb, first_frame_rgb, 0, None, None, None, 0
def mask2bbox(mask):
if len(np.where(mask > 0)[0]) == 0:
print(f'not mask')
return np.array([0, 0, 0, 0]).astype(np.int64), False
x_ = np.sum(mask, axis=0)
y_ = np.sum(mask, axis=1)
x0 = np.min(np.nonzero(x_)[0])
x1 = np.max(np.nonzero(x_)[0])
y0 = np.min(np.nonzero(y_)[0])
y1 = np.max(np.nonzero(y_)[0])
return np.array([x0, y0, x1, y1]).astype(np.int64), True
def sam_stroke(Seg_Tracker, drawing_board, last_draw, frame_num, ann_obj_id):
predictor, inference_state, image_predictor = Seg_Tracker
image_path = f'output_frames/{frame_num:07d}.jpg'
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
display_image = drawing_board["image"]
image_predictor.set_image(image)
input_mask = drawing_board["mask"]
input_mask[input_mask != 0] = 255
if last_draw is not None:
diff_mask = cv2.absdiff(input_mask, last_draw)
input_mask = diff_mask
bbox, hasMask = mask2bbox(input_mask[:, :, 0])
if not hasMask :
return Seg_Tracker, display_image, display_image
masks, scores, logits = image_predictor.predict( point_coords=None, point_labels=None, box=bbox[None, :], multimask_output=False,)
mask = masks > 0.0
masked_frame = show_mask(mask, display_image, ann_obj_id)
masked_with_rect = draw_rect(masked_frame, bbox, ann_obj_id)
frame_idx, object_ids, masks = predictor.add_new_mask(inference_state, frame_idx=frame_num, obj_id=ann_obj_id, mask=mask[0])
last_draw = drawing_board["mask"]
return Seg_Tracker, masked_with_rect, masked_with_rect, last_draw
def draw_rect(image, bbox, obj_id):
cmap = plt.get_cmap("tab10")
color = np.array(cmap(obj_id)[:3])
rgb_color = tuple(map(int, (color[:3] * 255).astype(np.uint8)))
inv_color = tuple(map(int, (255 - color[:3] * 255).astype(np.uint8)))
x0, y0, x1, y1 = bbox
image_with_rect = cv2.rectangle(image.copy(), (x0, y0), (x1, y1), inv_color, thickness=2)
return image_with_rect
def sam_click(Seg_Tracker, frame_num, point_mode, click_stack, ann_obj_id, evt: gr.SelectData):
points_dict, labels_dict = click_stack
predictor, inference_state, image_predictor = Seg_Tracker
ann_frame_idx = frame_num # the frame index we interact with
print(f'ann_frame_idx: {ann_frame_idx}')
point = np.array([[evt.index[0], evt.index[1]]], dtype=np.float32)
if point_mode == "Positive":
label = np.array([1], np.int32)
else:
label = np.array([0], np.int32)
if ann_frame_idx not in points_dict:
points_dict[ann_frame_idx] = {}
if ann_frame_idx not in labels_dict:
labels_dict[ann_frame_idx] = {}
if ann_obj_id not in points_dict[ann_frame_idx]:
points_dict[ann_frame_idx][ann_obj_id] = np.empty((0, 2), dtype=np.float32)
if ann_obj_id not in labels_dict[ann_frame_idx]:
labels_dict[ann_frame_idx][ann_obj_id] = np.empty((0,), dtype=np.int32)
points_dict[ann_frame_idx][ann_obj_id] = np.append(points_dict[ann_frame_idx][ann_obj_id], point, axis=0)
labels_dict[ann_frame_idx][ann_obj_id] = np.append(labels_dict[ann_frame_idx][ann_obj_id], label, axis=0)
click_stack = (points_dict, labels_dict)
frame_idx, out_obj_ids, out_mask_logits = predictor.add_new_points(
inference_state=inference_state,
frame_idx=ann_frame_idx,
obj_id=ann_obj_id,
points=points_dict[ann_frame_idx][ann_obj_id],
labels=labels_dict[ann_frame_idx][ann_obj_id],
)
image_path = f'output_frames/{ann_frame_idx:07d}.jpg'
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
masked_frame = image.copy()
for i, obj_id in enumerate(out_obj_ids):
mask = (out_mask_logits[i] > 0.0).cpu().numpy()
masked_frame = show_mask(mask, image=masked_frame, obj_id=obj_id)
masked_frame_with_markers = draw_markers(masked_frame, points_dict[ann_frame_idx], labels_dict[ann_frame_idx])
return Seg_Tracker, masked_frame_with_markers, masked_frame_with_markers, click_stack
def draw_markers(image, points_dict, labels_dict):
cmap = plt.get_cmap("tab10")
image_h, image_w = image.shape[:2]
marker_size = max(1, int(min(image_h, image_w) * 0.05))
for obj_id in points_dict:
color = np.array(cmap(obj_id)[:3])
rgb_color = tuple(map(int, (color[:3] * 255).astype(np.uint8)))
inv_color = tuple(map(int, (255 - color[:3] * 255).astype(np.uint8)))
for point, label in zip(points_dict[obj_id], labels_dict[obj_id]):
x, y = int(point[0]), int(point[1])
if label == 1:
cv2.drawMarker(image, (x, y), inv_color, markerType=cv2.MARKER_CROSS, markerSize=marker_size, thickness=2)
else:
cv2.drawMarker(image, (x, y), inv_color, markerType=cv2.MARKER_TILTED_CROSS, markerSize=int(marker_size / np.sqrt(2)), thickness=2)
return image
def show_mask(mask, image=None, obj_id=None):
cmap = plt.get_cmap("tab10")
cmap_idx = 0 if obj_id is None else obj_id
color = np.array([*cmap(cmap_idx)[:3], 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
mask_image = (mask_image * 255).astype(np.uint8)
if image is not None:
image_h, image_w = image.shape[:2]
if (image_h, image_w) != (h, w):
raise ValueError(f"Image dimensions ({image_h}, {image_w}) and mask dimensions ({h}, {w}) do not match")
colored_mask = np.zeros_like(image, dtype=np.uint8)
for c in range(3):
colored_mask[..., c] = mask_image[..., c]
alpha_mask = mask_image[..., 3] / 255.0
for c in range(3):
image[..., c] = np.where(alpha_mask > 0, (1 - alpha_mask) * image[..., c] + alpha_mask * colored_mask[..., c], image[..., c])
return image
return mask_image
def show_res_by_slider(frame_per, click_stack):
image_path = 'output_frames'
output_combined_dir = 'output_combined'
combined_frames = sorted([os.path.join(output_combined_dir, img_name) for img_name in os.listdir(output_combined_dir)])
if combined_frames:
output_masked_frame_path = combined_frames
else:
original_frames = sorted([os.path.join(image_path, img_name) for img_name in os.listdir(image_path)])
output_masked_frame_path = original_frames
total_frames_num = len(output_masked_frame_path)
if total_frames_num == 0:
print("No output results found")
return None, None
else:
frame_num = math.floor(total_frames_num * frame_per / 100)
if frame_per == 100:
frame_num = frame_num - 1
chosen_frame_path = output_masked_frame_path[frame_num]
print(f"{chosen_frame_path}")
chosen_frame_show = cv2.imread(chosen_frame_path)
chosen_frame_show = cv2.cvtColor(chosen_frame_show, cv2.COLOR_BGR2RGB)
points_dict, labels_dict = click_stack
if frame_num in points_dict and frame_num in labels_dict:
chosen_frame_show = draw_markers(chosen_frame_show, points_dict[frame_num], labels_dict[frame_num])
return chosen_frame_show, chosen_frame_show, frame_num
def clear_folder(folder_path):
if os.path.exists(folder_path):
shutil.rmtree(folder_path)
os.makedirs(folder_path)
def zip_folder(folder_path, output_zip_path):
with zipfile.ZipFile(output_zip_path, 'w', zipfile.ZIP_STORED) as zipf:
for root, _, files in os.walk(folder_path):
for file in files:
file_path = os.path.join(root, file)
zipf.write(file_path, os.path.relpath(file_path, folder_path))
def tracking_objects(Seg_Tracker, frame_num, input_video):
output_dir = 'output_frames'
output_masks_dir = 'output_masks'
output_combined_dir = 'output_combined'
output_video_path = 'output_video.mp4'
output_zip_path = 'output_masks.zip'
clear_folder(output_masks_dir)
clear_folder(output_combined_dir)
if os.path.exists(output_video_path):
os.remove(output_video_path)
if os.path.exists(output_zip_path):
os.remove(output_zip_path)
video_segments = {}
predictor, inference_state, image_predictor = Seg_Tracker
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
frame_files = sorted([f for f in os.listdir(output_dir) if f.endswith('.jpg')])
# for frame_idx in sorted(video_segments.keys()):
for frame_file in frame_files:
frame_idx = int(os.path.splitext(frame_file)[0])
frame_path = os.path.join(output_dir, frame_file)
image = cv2.imread(frame_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
masked_frame = image.copy()
if frame_idx in video_segments:
for obj_id, mask in video_segments[frame_idx].items():
masked_frame = show_mask(mask, image=masked_frame, obj_id=obj_id)
mask_output_path = os.path.join(output_masks_dir, f'{obj_id}_{frame_idx:07d}.png')
cv2.imwrite(mask_output_path, show_mask(mask))
combined_output_path = os.path.join(output_combined_dir, f'{frame_idx:07d}.png')
combined_image_bgr = cv2.cvtColor(masked_frame, cv2.COLOR_RGB2BGR)
cv2.imwrite(combined_output_path, combined_image_bgr)
if frame_idx == frame_num:
final_masked_frame = masked_frame
cap = cv2.VideoCapture(input_video)
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
# output_frames = int(total_frames * scale_slider)
output_frames = len([name for name in os.listdir(output_combined_dir) if os.path.isfile(os.path.join(output_combined_dir, name)) and name.endswith('.png')])
out_fps = fps * output_frames / total_frames
ffmpeg.input(os.path.join(output_combined_dir, '%07d.png'), framerate=out_fps).output(output_video_path, vcodec='h264_nvenc', pix_fmt='yuv420p').run()
zip_folder(output_masks_dir, output_zip_path)
print("done")
return final_masked_frame, final_masked_frame, output_video_path, output_video_path, output_zip_path
def increment_ann_obj_id(ann_obj_id):
ann_obj_id += 1
return ann_obj_id
def drawing_board_get_input_first_frame(input_first_frame):
return input_first_frame
def seg_track_app():
##########################################################
###################### Front-end ########################
##########################################################
css = """
#input_output_video video {
max-height: 550px;
max-width: 100%;
height: auto;
}
"""
app = gr.Blocks(css=css)
with app:
gr.Markdown(
'''
<div style="text-align:center;">
<span style="font-size:3em; font-weight:bold;">SAM2 for Video Segmentation 🔥</span>
</div>
This api supports using box (generated by scribble) and point prompts for video segmentation with SAM2.
1. Upload video file
2. Select mdoel size and downsample frame rate and run `Preprocess`
3. Use `Stroke to Box Prompt` to draw box on the first frame or `Point Prompt` to click on the first frame
4. Click `Segment` to get the segmentation result
5. Click `Add New Object` to add new object
6. Click `Start Tracking` to track objects in the video
7. Click `Reset` to reset the app
8. Download the video with segmentation result
'''
)
click_stack = gr.State(({}, {}))
Seg_Tracker = gr.State(None)
frame_num = gr.State(value=(int(0)))
ann_obj_id = gr.State(value=(int(0)))
last_draw = gr.State(None)
with gr.Row():
with gr.Column(scale=0.5):
with gr.Row():
tab_video_input = gr.Tab(label="Video input")
with tab_video_input:
input_video = gr.Video(label='Input video', elem_id="input_output_video")
with gr.Row():
checkpoint = gr.Dropdown(label="Model Size", choices=["tiny", "small", "base-plus", "large"], value="tiny")
scale_slider = gr.Slider(
label="Downsampe Frame Rate",
minimum=0.0,
maximum=1.0,
step=0.25,
value=1.0,
interactive=True
)
preprocess_button = gr.Button(
value="Preprocess",
interactive=True,
)
with gr.Row():
tab_stroke = gr.Tab(label="Stroke to Box Prompt")
with tab_stroke:
drawing_board = gr.Image(label='Drawing Board', tool="sketch", brush_radius=10, interactive=True)
with gr.Row():
seg_acc_stroke = gr.Button(value="Segment", interactive=True)
tab_click = gr.Tab(label="Point Prompt")
with tab_click:
input_first_frame = gr.Image(label='Segment result of first frame',interactive=True).style(height=550)
with gr.Row():
point_mode = gr.Radio(
choices=["Positive", "Negative"],
value="Positive",
label="Point Prompt",
interactive=True)
with gr.Row():
with gr.Column():
frame_per = gr.Slider(
label = "Percentage of Frames Viewed",
minimum= 0.0,
maximum= 100.0,
step=0.01,
value=0.0,
)
new_object_button = gr.Button(
value="Add New Object",
interactive=True
)
track_for_video = gr.Button(
value="Start Tracking",
interactive=True,
)
reset_button = gr.Button(
value="Reset",
interactive=True,
)
with gr.Column(scale=0.5):
output_video = gr.Video(label='Visualize Results', elem_id="input_output_video")
output_mp4 = gr.File(label="Predicted video")
output_mask = gr.File(label="Predicted masks")
gr.Markdown(
'''
<div style="text-align:center; margin-top: 20px;">
The authors of this work highly appreciate Meta AI for making SAM2 publicly available to the community.
The interface was built on <a href="https://github.com/z-x-yang/Segment-and-Track-Anything/blob/main/tutorial/tutorial%20for%20WebUI-1.0-Version.md" target="_blank">SegTracker</a>.
<a href="https://docs.google.com/document/d/1idDBV0faOjdjVs-iAHr0uSrw_9_ZzLGrUI2FEdK-lso/edit?usp=sharing" target="_blank">Data Source</a>.
</div>
'''
)
##########################################################
###################### back-end #########################
##########################################################
# listen to the preprocess button click to get the first frame of video with scaling
preprocess_button.click(
fn=get_meta_from_video,
inputs=[
Seg_Tracker,
input_video,
scale_slider,
checkpoint
],
outputs=[
Seg_Tracker, click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id
]
)
frame_per.release(
fn=show_res_by_slider,
inputs=[
frame_per, click_stack
],
outputs=[
input_first_frame, drawing_board, frame_num
]
)
# Interactively modify the mask acc click
input_first_frame.select(
fn=sam_click,
inputs=[
Seg_Tracker, frame_num, point_mode, click_stack, ann_obj_id
],
outputs=[
Seg_Tracker, input_first_frame, drawing_board, click_stack
]
)
# Track object in video
track_for_video.click(
fn=tracking_objects,
inputs=[
Seg_Tracker,
frame_num,
input_video,
],
outputs=[
input_first_frame,
drawing_board,
output_video,
output_mp4,
output_mask
]
)
reset_button.click(
fn=clean,
inputs=[
Seg_Tracker
],
outputs=[
Seg_Tracker, click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id
]
)
new_object_button.click(
fn=increment_ann_obj_id,
inputs=[
ann_obj_id
],
outputs=[
ann_obj_id
]
)
tab_stroke.select(
fn=drawing_board_get_input_first_frame,
inputs=[input_first_frame,],
outputs=[drawing_board,],
)
seg_acc_stroke.click(
fn=sam_stroke,
inputs=[
Seg_Tracker, drawing_board, last_draw, frame_num, ann_obj_id
],
outputs=[
Seg_Tracker, input_first_frame, drawing_board, last_draw
]
)
app.queue(concurrency_count=1)
app.launch(debug=True, enable_queue=True, share=True)
if __name__ == "__main__":
seg_track_app()