@@ -27,7 +27,7 @@ Models:
27
27
- Task : Semantic Segmentation
28
28
Dataset : DRIVE
29
29
Metrics :
30
- mIoU : 78.67
30
+ Dice : 78.67
31
31
Config : configs/unet/fcn_unet_s5-d16_64x64_40k_drive.py
32
32
Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth
33
33
- Name : pspnet_unet_s5-d16_64x64_40k_drive
@@ -41,7 +41,7 @@ Models:
41
41
- Task : Semantic Segmentation
42
42
Dataset : DRIVE
43
43
Metrics :
44
- mIoU : 78.62
44
+ Dice : 78.62
45
45
Config : configs/unet/pspnet_unet_s5-d16_64x64_40k_drive.py
46
46
Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth
47
47
- Name : deeplabv3_unet_s5-d16_64x64_40k_drive
@@ -55,7 +55,7 @@ Models:
55
55
- Task : Semantic Segmentation
56
56
Dataset : DRIVE
57
57
Metrics :
58
- mIoU : 78.69
58
+ Dice : 78.69
59
59
Config : configs/unet/deeplabv3_unet_s5-d16_64x64_40k_drive.py
60
60
Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth
61
61
- Name : fcn_unet_s5-d16_128x128_40k_stare
@@ -69,7 +69,7 @@ Models:
69
69
- Task : Semantic Segmentation
70
70
Dataset : STARE
71
71
Metrics :
72
- mIoU : 81.02
72
+ Dice : 81.02
73
73
Config : configs/unet/fcn_unet_s5-d16_128x128_40k_stare.py
74
74
Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth
75
75
- Name : pspnet_unet_s5-d16_128x128_40k_stare
@@ -83,7 +83,7 @@ Models:
83
83
- Task : Semantic Segmentation
84
84
Dataset : STARE
85
85
Metrics :
86
- mIoU : 81.22
86
+ Dice : 81.22
87
87
Config : configs/unet/pspnet_unet_s5-d16_128x128_40k_stare.py
88
88
Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth
89
89
- Name : deeplabv3_unet_s5-d16_128x128_40k_stare
@@ -97,7 +97,7 @@ Models:
97
97
- Task : Semantic Segmentation
98
98
Dataset : STARE
99
99
Metrics :
100
- mIoU : 80.93
100
+ Dice : 80.93
101
101
Config : configs/unet/deeplabv3_unet_s5-d16_128x128_40k_stare.py
102
102
Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth
103
103
- Name : fcn_unet_s5-d16_128x128_40k_chase_db1
@@ -111,7 +111,7 @@ Models:
111
111
- Task : Semantic Segmentation
112
112
Dataset : CHASE_DB1
113
113
Metrics :
114
- mIoU : 80.24
114
+ Dice : 80.24
115
115
Config : configs/unet/fcn_unet_s5-d16_128x128_40k_chase_db1.py
116
116
Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth
117
117
- Name : pspnet_unet_s5-d16_128x128_40k_chase_db1
@@ -125,7 +125,7 @@ Models:
125
125
- Task : Semantic Segmentation
126
126
Dataset : CHASE_DB1
127
127
Metrics :
128
- mIoU : 80.36
128
+ Dice : 80.36
129
129
Config : configs/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1.py
130
130
Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth
131
131
- Name : deeplabv3_unet_s5-d16_128x128_40k_chase_db1
@@ -139,7 +139,7 @@ Models:
139
139
- Task : Semantic Segmentation
140
140
Dataset : CHASE_DB1
141
141
Metrics :
142
- mIoU : 80.47
142
+ Dice : 80.47
143
143
Config : configs/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1.py
144
144
Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth
145
145
- Name : fcn_unet_s5-d16_256x256_40k_hrf
@@ -153,7 +153,7 @@ Models:
153
153
- Task : Semantic Segmentation
154
154
Dataset : HRF
155
155
Metrics :
156
- mIoU : 79.45
156
+ Dice : 79.45
157
157
Config : configs/unet/fcn_unet_s5-d16_256x256_40k_hrf.py
158
158
Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth
159
159
- Name : pspnet_unet_s5-d16_256x256_40k_hrf
@@ -167,7 +167,7 @@ Models:
167
167
- Task : Semantic Segmentation
168
168
Dataset : HRF
169
169
Metrics :
170
- mIoU : 80.07
170
+ Dice : 80.07
171
171
Config : configs/unet/pspnet_unet_s5-d16_256x256_40k_hrf.py
172
172
Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth
173
173
- Name : deeplabv3_unet_s5-d16_256x256_40k_hrf
@@ -181,6 +181,6 @@ Models:
181
181
- Task : Semantic Segmentation
182
182
Dataset : HRF
183
183
Metrics :
184
- mIoU : 80.21
184
+ Dice : 80.21
185
185
Config : configs/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf.py
186
186
Weights : https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth
0 commit comments