Skip to content

Commit 6d88b07

Browse files
authored
fixing dice metric in unet (open-mmlab#1041)
1 parent 008856a commit 6d88b07

File tree

2 files changed

+13
-13
lines changed

2 files changed

+13
-13
lines changed

.dev/md2yml.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -176,7 +176,7 @@ def parse_md(md_file):
176176
'Task': 'Semantic Segmentation',
177177
'Dataset': current_dataset,
178178
'Metrics': {
179-
'mIoU': float(els[ss_id]),
179+
cols[ss_id]: float(els[ss_id]),
180180
},
181181
},
182182
],

configs/unet/unet.yml

+12-12
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ Models:
2727
- Task: Semantic Segmentation
2828
Dataset: DRIVE
2929
Metrics:
30-
mIoU: 78.67
30+
Dice: 78.67
3131
Config: configs/unet/fcn_unet_s5-d16_64x64_40k_drive.py
3232
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_64x64_40k_drive/fcn_unet_s5-d16_64x64_40k_drive_20201223_191051-5daf6d3b.pth
3333
- Name: pspnet_unet_s5-d16_64x64_40k_drive
@@ -41,7 +41,7 @@ Models:
4141
- Task: Semantic Segmentation
4242
Dataset: DRIVE
4343
Metrics:
44-
mIoU: 78.62
44+
Dice: 78.62
4545
Config: configs/unet/pspnet_unet_s5-d16_64x64_40k_drive.py
4646
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_64x64_40k_drive/pspnet_unet_s5-d16_64x64_40k_drive_20201227_181818-aac73387.pth
4747
- Name: deeplabv3_unet_s5-d16_64x64_40k_drive
@@ -55,7 +55,7 @@ Models:
5555
- Task: Semantic Segmentation
5656
Dataset: DRIVE
5757
Metrics:
58-
mIoU: 78.69
58+
Dice: 78.69
5959
Config: configs/unet/deeplabv3_unet_s5-d16_64x64_40k_drive.py
6060
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_64x64_40k_drive/deeplabv3_unet_s5-d16_64x64_40k_drive_20201226_094047-0671ff20.pth
6161
- Name: fcn_unet_s5-d16_128x128_40k_stare
@@ -69,7 +69,7 @@ Models:
6969
- Task: Semantic Segmentation
7070
Dataset: STARE
7171
Metrics:
72-
mIoU: 81.02
72+
Dice: 81.02
7373
Config: configs/unet/fcn_unet_s5-d16_128x128_40k_stare.py
7474
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_stare/fcn_unet_s5-d16_128x128_40k_stare_20201223_191051-7d77e78b.pth
7575
- Name: pspnet_unet_s5-d16_128x128_40k_stare
@@ -83,7 +83,7 @@ Models:
8383
- Task: Semantic Segmentation
8484
Dataset: STARE
8585
Metrics:
86-
mIoU: 81.22
86+
Dice: 81.22
8787
Config: configs/unet/pspnet_unet_s5-d16_128x128_40k_stare.py
8888
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_stare/pspnet_unet_s5-d16_128x128_40k_stare_20201227_181818-3c2923c4.pth
8989
- Name: deeplabv3_unet_s5-d16_128x128_40k_stare
@@ -97,7 +97,7 @@ Models:
9797
- Task: Semantic Segmentation
9898
Dataset: STARE
9999
Metrics:
100-
mIoU: 80.93
100+
Dice: 80.93
101101
Config: configs/unet/deeplabv3_unet_s5-d16_128x128_40k_stare.py
102102
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_stare/deeplabv3_unet_s5-d16_128x128_40k_stare_20201226_094047-93dcb93c.pth
103103
- Name: fcn_unet_s5-d16_128x128_40k_chase_db1
@@ -111,7 +111,7 @@ Models:
111111
- Task: Semantic Segmentation
112112
Dataset: CHASE_DB1
113113
Metrics:
114-
mIoU: 80.24
114+
Dice: 80.24
115115
Config: configs/unet/fcn_unet_s5-d16_128x128_40k_chase_db1.py
116116
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_128x128_40k_chase_db1/fcn_unet_s5-d16_128x128_40k_chase_db1_20201223_191051-11543527.pth
117117
- Name: pspnet_unet_s5-d16_128x128_40k_chase_db1
@@ -125,7 +125,7 @@ Models:
125125
- Task: Semantic Segmentation
126126
Dataset: CHASE_DB1
127127
Metrics:
128-
mIoU: 80.36
128+
Dice: 80.36
129129
Config: configs/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1.py
130130
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_128x128_40k_chase_db1/pspnet_unet_s5-d16_128x128_40k_chase_db1_20201227_181818-68d4e609.pth
131131
- Name: deeplabv3_unet_s5-d16_128x128_40k_chase_db1
@@ -139,7 +139,7 @@ Models:
139139
- Task: Semantic Segmentation
140140
Dataset: CHASE_DB1
141141
Metrics:
142-
mIoU: 80.47
142+
Dice: 80.47
143143
Config: configs/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1.py
144144
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_128x128_40k_chase_db1/deeplabv3_unet_s5-d16_128x128_40k_chase_db1_20201226_094047-4c5aefa3.pth
145145
- Name: fcn_unet_s5-d16_256x256_40k_hrf
@@ -153,7 +153,7 @@ Models:
153153
- Task: Semantic Segmentation
154154
Dataset: HRF
155155
Metrics:
156-
mIoU: 79.45
156+
Dice: 79.45
157157
Config: configs/unet/fcn_unet_s5-d16_256x256_40k_hrf.py
158158
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/fcn_unet_s5-d16_256x256_40k_hrf/fcn_unet_s5-d16_256x256_40k_hrf_20201223_173724-d89cf1ed.pth
159159
- Name: pspnet_unet_s5-d16_256x256_40k_hrf
@@ -167,7 +167,7 @@ Models:
167167
- Task: Semantic Segmentation
168168
Dataset: HRF
169169
Metrics:
170-
mIoU: 80.07
170+
Dice: 80.07
171171
Config: configs/unet/pspnet_unet_s5-d16_256x256_40k_hrf.py
172172
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/pspnet_unet_s5-d16_256x256_40k_hrf/pspnet_unet_s5-d16_256x256_40k_hrf_20201227_181818-fdb7e29b.pth
173173
- Name: deeplabv3_unet_s5-d16_256x256_40k_hrf
@@ -181,6 +181,6 @@ Models:
181181
- Task: Semantic Segmentation
182182
Dataset: HRF
183183
Metrics:
184-
mIoU: 80.21
184+
Dice: 80.21
185185
Config: configs/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf.py
186186
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/unet/deeplabv3_unet_s5-d16_256x256_40k_hrf/deeplabv3_unet_s5-d16_256x256_40k_hrf_20201226_094047-3a1fdf85.pth

0 commit comments

Comments
 (0)