-
Notifications
You must be signed in to change notification settings - Fork 1
/
search.py
51 lines (35 loc) · 1.47 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import pickle
import pandas as pd
import streamlit as st
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import linear_kernel
df = pickle.load(open("criterion.pkl", "rb"))
summaries = df.summary.values
st.title('Criterion Film Search')
user_input = st.text_input("Search here with keywords relating to themes, characters,"
" directors, country, year, plot... ")
def critsearch(text_input):
# add the user's query to the film summaries
array_with_query = np.insert(summaries, 0, user_input)
# vectorize all of the docs using a sparse matrix with TF-IDF
tfidf = TfidfVectorizer().fit_transform(array_with_query)
# use dot product to find most similar vectors/summaries
cosine_similarities = linear_kernel(tfidf[0], tfidf).flatten()
# find the top 40, using -40 since they are reverse sorted
related_docs_indices = cosine_similarities.argsort()[:-40:-1]
# print the results with streamlit
result_no = 1
for i in related_docs_indices[1:]:
st.write(result_no)
summ = array_with_query[i].split('•')
try:
st.write('Title: ', df.iloc[i - 1].title, '\n', summ[0], '\n', summ[1])
st.write(summ[2].split(maxsplit=1)[0])
st.write(summ[2].split(maxsplit=1)[1])
except:
st.write(array_with_query[i])
st.write('\n')
result_no += 1
if user_input != '':
critsearch(user_input)