-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconditional_gen.py
2082 lines (1663 loc) · 82.1 KB
/
conditional_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
import sys
import os
import argparse
import json
import random
import shutil
import copy
import logging
import datetime
import torch
from torch import cuda
import torch.nn as nn
from torch.autograd import Variable
from torch.nn.parameter import Parameter
import torch.nn.functional as F
import numpy as np
import h5py
import time
# from optim_n2n import OptimN2N
from data import Dataset
# import utils
import logger
import math
# from preprocess_text import Indexer
# from torch.utils.tensorboard import SummaryWriter
import torch.nn.utils.spectral_norm as spectral_norm
from collections import OrderedDict, Counter
from dataloader_bases import DataLoader
# from dgmvae import get_chat_tokenize
from sklearn.metrics.cluster import homogeneity_score
import subprocess
parser = argparse.ArgumentParser()
# Input data
parser.add_argument('--train_file', default='data/ptb/ptb-train.hdf5')
parser.add_argument('--val_file', default='data/ptb/ptb-val.hdf5')
parser.add_argument('--test_file', default='data/ptb/ptb-test.hdf5')
parser.add_argument('--vocab_file', default='data/ptb/ptb.dict')
parser.add_argument('--train_from', default='')
# SRI options
parser.add_argument('--z_n_iters', type=int, default=20)
parser.add_argument('--z_step_size', type=float, default=0.5)
parser.add_argument('--z_with_noise', type=int, default=0)
parser.add_argument('--num_z_samples', type=int, default=10)
# EBM
parser.add_argument('--prior_hidden_dim', type=int, default=200)
parser.add_argument('--z_prior_with_noise', type=int, default=1)
parser.add_argument('--prior_step_size', type=float, default=0.5)
parser.add_argument('--z_n_iters_prior', type=int, default=40)
parser.add_argument('--max_grad_norm_prior', default=1, type=float)
parser.add_argument('--ebm_reg', default=0.001, type=float)
parser.add_argument('--ref_dist', default='gaussian', type=str, choices=['gaussian', 'uniform'])
parser.add_argument('--ref_sigma', type=float, default=1.)
parser.add_argument('--init_factor', type=float, default=1.)
# LM
parser.add_argument('--lm_lr', default=0.0001, type=float)
parser.add_argument('--revserse_lm_lr', default=0.0001, type=float)
parser.add_argument('--reverse_lm_num_epoch', type=int, default=8)
parser.add_argument('--lm_pretrain', type=int, default=0)
parser.add_argument('--pretrained_lm', type=str, default="output/012_ptb_lm_pretraining/2020-05-24-01-16-46-nll103.07/forward_lm.pt")
parser.add_argument('--reverse_lm_eval', type=int, default=1)
# Model options
parser.add_argument('--latent_dim', default=32, type=int)
parser.add_argument('--dec_word_dim', default=512, type=int)
parser.add_argument('--dec_h_dim', default=512, type=int)
parser.add_argument('--dec_num_layers', default=1, type=int)
parser.add_argument('--dec_dropout', default=0.2, type=float)
parser.add_argument('--model', default='abp', type=str, choices = ['abp', 'vae', 'autoreg', 'savae', 'svi'])
parser.add_argument('--train_n2n', default=1, type=int)
parser.add_argument('--train_kl', default=1, type=int)
# Optimization options
parser.add_argument('--log_dir', default='/media/hdd/cyclical_annealing/log')
parser.add_argument('--checkpoint_dir', default='models/ptb')
parser.add_argument('--slurm', default=0, type=int)
parser.add_argument('--warmup', default=0, type=int)
parser.add_argument('--num_epochs', default=100, type=int)
parser.add_argument('--min_epochs', default=15, type=int)
parser.add_argument('--start_epoch', default=0, type=int)
parser.add_argument('--decay', default=0, type=int)
parser.add_argument('--momentum', default=0.5, type=float)
parser.add_argument('--lr', default=0.001, type=float)
parser.add_argument('--prior_lr', default=0.0001, type=float)
parser.add_argument('--max_grad_norm', default=5, type=float)
parser.add_argument('--gpu', default=1, type=int)
parser.add_argument('--seed', default=859, type=int)
parser.add_argument('--print_every', type=int, default=100)
parser.add_argument('--sample_every', type=int, default=1000)
parser.add_argument('--kl_every', type=int, default=100)
parser.add_argument('--compute_kl', type=int, default=1)
parser.add_argument('--test', type=int, default=0)
# corpus config
parser.add_argument('--max_utt_len', type=int, default=40)
parser.add_argument('--data_dir', type=str, default='data/stanford')
parser.add_argument('--max_vocab_cnt', type=int, default=10000)
parser.add_argument('--fix_batch', type=bool, default=False)
parser.add_argument('--batch_size', type=int, default=30)
parser.add_argument('--backward_size', type=int, default=5)
parser.add_argument('--num_cls', type=int, default=125)
parser.add_argument('--n_per_cls', type=int, default=3)
parser.add_argument('--embedding_path', type=str, default="data/word2vec/smd.txt")
parser.add_argument('--debug', type=bool, default=False)
# KL-annealing
parser.add_argument('--anneal', type=bool, default=False) #TODO (bp): anneal KL weight
parser.add_argument('--anneal_function', type=str, default='logistic')
parser.add_argument('--anneal_k', type=float, default=0.0025)
parser.add_argument('--anneal_x0', type=int, default=2500)
parser.add_argument('--anneal_warm_up_step', type=int, default=0)
parser.add_argument('--anneal_warm_up_value', type=float, default=0.000)
parser.add_argument('--pretrain_ae_step', type=int, default=0)
parser.add_argument('--ae_epochs', type=int, default=8)
parser.add_argument('--dim_target_kl', type=float, default=1.0)
parser.add_argument('--max_kl_weight', type=float, default=0.8)
parser.add_argument('--num_cycle', type=int, default=5)
parser.add_argument('--num_cycle_epoch', type=int, default=100)
parser.add_argument('--num_z_rep', type=int, default=10)
##------------------------------------------------------------------------------------------------------------------##
PAD = '<pad>'
UNK = '<unk>'
BOS = '<s>'
EOS = '</s>'
BOD = "<d>"
EOD = "</d>"
BOT = "<t>"
EOT = "</t>"
ME = "<me>"
OT = "<ot>"
SYS = "<sys>"
USR = "<usr>"
KB = "<kb>"
SEP = "|"
REQ = "<requestable>"
INF = "<informable>"
WILD = "%s"
INT = 0
LONG = 1
FLOAT = 2
class Pack(OrderedDict):
# class Pack(dict):
def __getattr__(self, name):
return self[name]
def add(self, **kwargs):
for k, v in kwargs.items():
self[k] = v
def copy(self):
pack = Pack()
for k, v in self.items():
if type(v) is list:
pack[k] = list(v)
else:
pack[k] = v
return pack
@staticmethod
def msg_from_dict(dictionary, tokenize, speaker2id, bos_id, eos_id, include_domain=False):
pack = Pack()
for k, v in dictionary.items():
pack[k] = v
pack['speaker'] = speaker2id[pack.speaker]
pack['conf'] = dictionary.get('conf', 1.0)
utt = pack['utt']
if 'QUERY' in utt or "RET" in utt:
utt = str(utt)
utt = utt.translate(None, ''.join([':', '"', "{", "}", "]", "["]))
utt = unicode(utt)
if include_domain:
pack['utt'] = [bos_id, pack['speaker'], pack['domain']] + tokenize(utt) + [eos_id]
else:
pack['utt'] = [bos_id, pack['speaker']] + tokenize(utt) + [eos_id]
return pack
class StanfordCorpus(object):
logger = logging.getLogger(__name__)
def __init__(self, config):
self.config = config
self._path = config.data_dir
self.max_utt_len = config.max_utt_len
self.tokenize = get_chat_tokenize()
self.train_corpus = self._read_file(os.path.join(self._path, 'kvret_train_public.json'))
self.valid_corpus = self._read_file(os.path.join(self._path, 'kvret_dev_public.json'))
self.test_corpus = self._read_file(os.path.join(self._path, 'kvret_test_public.json'))
self._build_vocab(config.max_vocab_cnt)
# self._output_hyps(os.path.join(self._path, 'kvret_test_public.hyp'))
print("Done loading corpus")
def _output_hyps(self, path):
if not os.path.exists(path):
f = open(path, "w", encoding="utf-8")
for utts in self.test_corpus:
for utt in utts:
if utt['speaker'] != 0:
f.write(' '.join(utt['utt_ori']) + "\n")
f.close()
def _read_file(self, path):
with open(path, 'r') as f:
data = json.load(f)
return self._process_dialog(data)
def _process_dialog(self, data):
new_dialog = []
bod_utt = [BOS, BOD, EOS]
eod_utt = [BOS, EOD, EOS]
all_lens = []
all_dialog_lens = []
speaker_map = {'assistant': SYS, 'driver': USR}
for raw_dialog in data:
intent = raw_dialog['scenario']['task']['intent']
dialog = [Pack(utt=bod_utt,
speaker=0,
meta={'intent': intent, "text": ' '.join(bod_utt[1:-1])})]
for turn in raw_dialog['dialogue']:
utt = turn['data']['utterance']
utt_ori = self.tokenize(utt)
utt = [BOS, speaker_map[turn['turn']]] + utt_ori + [EOS]
all_lens.append(len(utt))
# meta={"text": line.strip()}
dialog.append(Pack(utt=utt, speaker=turn['turn'], utt_ori=utt_ori, meta={'intent': intent,
'text': ' '.join(utt[1:-1])}))
if hasattr(self.config, 'include_eod') and self.config.include_eod:
dialog.append(Pack(utt=eod_utt, speaker=0, meta={'intent': intent,
'text': ' '.join(eod_utt[1:-1])}))
all_dialog_lens.append(len(dialog))
new_dialog.append(dialog)
print("Max utt len %d, mean utt len %.2f" % (
np.max(all_lens), float(np.mean(all_lens))))
print("Max dialog len %d, mean dialog len %.2f" % (
np.max(all_dialog_lens), float(np.mean(all_dialog_lens))))
return new_dialog
def _build_vocab(self, max_vocab_cnt):
all_words = []
for dialog in self.train_corpus:
for turn in dialog:
all_words.extend(turn.utt)
vocab_count = Counter(all_words).most_common()
raw_vocab_size = len(vocab_count)
discard_wc = np.sum([c for t, c, in vocab_count[max_vocab_cnt:]])
vocab_count = vocab_count[0:max_vocab_cnt]
# create vocabulary list sorted by count
print("Load corpus with train size %d, valid size %d, "
"test size %d raw vocab size %d vocab size %d at cut_off %d OOV rate %f"
% (len(self.train_corpus), len(self.valid_corpus),
len(self.test_corpus),
raw_vocab_size, len(vocab_count), vocab_count[-1][1],
float(discard_wc) / len(all_words)))
self.vocab = [PAD, UNK, SYS, USR] + [t for t, cnt in vocab_count]
self.rev_vocab = {t: idx for idx, t in enumerate(self.vocab)}
self.unk_id = self.rev_vocab[UNK]
print("<d> index %d" % self.rev_vocab[BOD])
def _sent2id(self, sent):
return [self.rev_vocab.get(t, self.unk_id) for t in sent]
def _to_id_corpus(self, data):
results = []
for dialog in data:
temp = []
# convert utterance and feature into numeric numbers
for turn in dialog:
id_turn = Pack(utt=self._sent2id(turn.utt),
speaker=turn.speaker,
meta=turn.get('meta'))
temp.append(id_turn)
results.append(temp)
return results
def get_corpus(self):
id_train = self._to_id_corpus(self.train_corpus)
id_valid = self._to_id_corpus(self.valid_corpus)
id_test = self._to_id_corpus(self.test_corpus)
return Pack(train=id_train, valid=id_valid, test=id_test)
class SMDDataLoader(DataLoader):
def __init__(self, name, data, config):
super(SMDDataLoader, self).__init__(name, fix_batch=config.fix_batch)
self.name = name
self.max_utt_size = config.max_utt_len
self.data = self.flatten_dialog(data, config.backward_size)
self.data_size = len(self.data)
if config.fix_batch:
all_ctx_lens = [len(d.context) for d in self.data]
self.indexes = list(np.argsort(all_ctx_lens))[::-1]
else:
self.indexes = list(range(len(self.data)))
def flatten_dialog(self, data, backward_size):
results = []
for dialog in data:
for i in range(1, len(dialog)):
e_id = i
s_id = max(0, e_id - backward_size)
response = dialog[i].copy()
# response['utt_orisent'] = response.utt
response['utt'] = self.pad_to(self.max_utt_size, response.utt, do_pad=False)
contexts = []
for turn in dialog[s_id:e_id]:
turn['utt'] = self.pad_to(self.max_utt_size, turn.utt, do_pad=False)
contexts.append(turn)
results.append(Pack(context=contexts, response=response))
return results
def _prepare_batch(self, selected_index):
rows = [self.data[idx] for idx in selected_index]
# input_context, context_lens, floors, topics, a_profiles, b_Profiles, outputs, output_lens
context_lens, context_utts, out_utts, out_lens = [], [], [], []
metas = []
for row in rows:
ctx = row.context
resp = row.response
out_utt = resp.utt
context_lens.append(len(ctx))
context_utts.append([turn.utt for turn in ctx])
out_utt = out_utt
out_utts.append(out_utt)
out_lens.append(len(out_utt))
metas.append(resp.meta)
# ori_out_utts.append(resp.utt_orisent)
vec_context_lens = np.array(context_lens)
vec_context = np.zeros((self.batch_size, np.max(vec_context_lens),
self.max_utt_size), dtype=np.int32)
vec_outs = np.zeros((self.batch_size, np.max(out_lens)), dtype=np.int32)
vec_out_lens = np.array(out_lens)
for b_id in range(self.batch_size):
vec_outs[b_id, 0:vec_out_lens[b_id]] = out_utts[b_id]
# fill the context tensor
new_array = np.empty((vec_context_lens[b_id], self.max_utt_size))
new_array.fill(0)
for i, row in enumerate(context_utts[b_id]):
for j, ele in enumerate(row):
new_array[i, j] = ele
vec_context[b_id, 0:vec_context_lens[b_id], :] = new_array
return Pack(contexts=vec_context, context_lens=vec_context_lens,
outputs=vec_outs, output_lens=vec_out_lens,
metas=metas)
##------------------------------------------------------------------------------------------------------------------##
class Word2VecEvaluator():
def __init__(self, word2vec_file):
print("Loading word2vecs")
f = open(word2vec_file, "r")
self.word2vec = {}
for line in f:
line_split = line.strip().split()
word = line_split[0]
try:
vecs = list(map(float, line_split[1:]))
except:
pass
# print(line_split)
self.word2vec[word] = torch.FloatTensor(np.array(vecs))
f.close()
def _sent_vec(self, wvecs):
m = torch.stack(wvecs, dim=0)
average = torch.mean(m, dim=0)
extrema_max, _ = torch.max(m, dim=0)
extrema_min, _ = torch.min(m, dim=0)
extrema_min_abs = torch.abs(extrema_min)
extrema = extrema_max * (extrema_max > extrema_min_abs).float() + extrema_min * (extrema_max <= extrema_min_abs).float()
average = average / torch.sqrt(torch.sum(average * average))
extrema = extrema / torch.sqrt(torch.sum(extrema * extrema))
return average, extrema
def _cosine(self, v1, v2):
return torch.sum((v1 * v2) / torch.sqrt(torch.sum(v1 * v1)) / torch.sqrt(torch.sum(v2 * v2)))
def _greedy(self, wlist1, wlist2):
max_cosine_list = []
for v1 in wlist1:
max_cosine = -2.0
for v2 in wlist2:
cos = self._cosine(v1, v2)
max_cosine = max(cos, max_cosine)
if max_cosine > -2.0:
max_cosine_list.append(max_cosine)
simi = sum(max_cosine_list) / len(max_cosine_list)
return simi.item()
def eval_from_file(self, tgt_fn, pred_fn):
tgt_f = open(tgt_fn, "r")
pred_f = open(pred_fn, "r")
tgt_s = []
pred_s = []
for tgt_line, pred_line in zip(tgt_f, pred_f):
tgt = tgt_line.strip().split()
tgt = [w for w in tgt if w[0] != "<" and w[-1] != ">"] # remove illegal words
tgt_s.append(tgt)
pred = pred_line.strip().split()
pred = [w for w in pred if w[0] != "<" and w[-1] != ">"] # remove illegal words
pred_s.append(pred)
ave_scores = []
ext_scores = []
grd_scores = []
for tgt, pred in zip(tgt_s, pred_s):
tgt_vecs = [self.word2vec[w] for w in tgt if w in self.word2vec]
pred_vecs = [self.word2vec[w] for w in pred if w in self.word2vec]
if len(tgt_vecs) == 0 or len(pred_vecs) == 0:
continue
else:
ave_tgt, ext_tgt = self._sent_vec(tgt_vecs)
ave_pred, ext_pred = self._sent_vec(pred_vecs)
ave_scores.append(torch.sum(ave_tgt * ave_pred).item())
ext_scores.append(torch.sum(ext_tgt * ext_pred).item())
grd_scores.append((self._greedy(tgt_vecs, pred_vecs) + self._greedy(pred_vecs, tgt_vecs)) / 2)
logger.info("Average: %lf" % (sum(ave_scores) / len(ave_scores)))
logger.info("Extrema: %lf" % (sum(ext_scores) / len(ext_scores)))
logger.info("Greedy: %lf" % (sum(grd_scores) / len(grd_scores)))
##------------------------------------------------------------------------------------------------------------------##
class LM(nn.Module):
def __init__(self, vocab_size=10000, word_dim=512, h_dim=1024, num_layers=1):
super(LM, self).__init__()
self.word_vecs = nn.Embedding(vocab_size, word_dim)
self.rnn = nn.LSTM(word_dim, h_dim, num_layers=num_layers, batch_first=True)
self.linear = nn.Sequential(*[nn.Linear(h_dim, vocab_size), nn.LogSoftmax(dim=-1)])
def forward(self, sent, training=True):
word_embed = F.dropout(self.word_vecs(sent[:, :-1]), training=training, p=0.5)
rnn_out, _ = self.rnn(word_embed)
rnn_out = F.dropout(rnn_out, training=training, p=0.5).contiguous()
preds = self.linear(rnn_out)
return preds
class GELU(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return F.gelu(x)
class Mish(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x *( torch.tanh(F.softplus(x)))
class Swish(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x * F.sigmoid(x)
##------------------------------------------------------------------------------------------------------------------##
def cast_type(var, dtype, use_gpu):
if use_gpu:
if dtype == INT:
var = var.type(torch.cuda.IntTensor)
elif dtype == LONG:
var = var.type(torch.cuda.LongTensor)
elif dtype == FLOAT:
var = var.type(torch.cuda.FloatTensor)
else:
raise ValueError("Unknown dtype")
else:
if dtype == INT:
var = var.type(torch.IntTensor)
elif dtype == LONG:
var = var.type(torch.LongTensor)
elif dtype == FLOAT:
var = var.type(torch.FloatTensor)
else:
raise ValueError("Unknown dtype")
return var
class BaseRNN(nn.Module):
SYM_MASK = PAD
SYM_EOS = EOS
KEY_ATTN_SCORE = 'attention_score'
KEY_LENGTH = 'length'
KEY_SEQUENCE = 'sequence'
KEY_LATENT = 'latent'
KEY_CLASS = 'class'
KEY_RECOG_LATENT = 'recog_latent'
KEY_POLICY = "policy"
KEY_G = 'g'
KEY_PTR_SOFTMAX = 'ptr_softmax'
KEY_PTR_CTX = "ptr_context"
def __init__(self, vocab_size, input_size, hidden_size, input_dropout_p,
dropout_p, n_layers, rnn_cell, bidirectional):
super(BaseRNN, self).__init__()
self.vocab_size = vocab_size
self.input_size = input_size
self.hidden_size = hidden_size
self.n_layers = n_layers
self.input_dropout_p = input_dropout_p
self.input_dropout = nn.Dropout(p=input_dropout_p)
if rnn_cell.lower() == 'lstm':
self.rnn_cell = nn.LSTM
elif rnn_cell.lower() == 'gru':
self.rnn_cell = nn.GRU
else:
raise ValueError("Unsupported RNN Cell: {0}".format(rnn_cell))
self.dropout_p = dropout_p
self.rnn = self.rnn_cell(input_size, hidden_size, n_layers,
batch_first=True, dropout=dropout_p,
bidirectional=bidirectional)
if rnn_cell.lower() == 'lstm':
for names in self.rnn._all_weights:
for name in filter(lambda n: "bias" in n, names):
bias = getattr(self.rnn, name)
n = bias.size(0)
start, end = n // 4, n // 2
bias.data[start:end].fill_(1.)
def multinomial_sampling(self, log_probs):
"""
Sampling element according to log_probs [batch_size x vocab_size]
Return: [batch_size x 1] selected token IDs
"""
return torch.multinomial(log_probs, 1)
def gumbel_max(self, log_probs):
"""
Obtain a sample from the Gumbel max. Not this is not differentibale.
:param log_probs: [batch_size x vocab_size]
:return: [batch_size x 1] selected token IDs
"""
sample = torch.Tensor(log_probs.size()).uniform_(0, 1)
sample = cast_type(Variable(sample), FLOAT, self.use_gpu)
# compute the gumbel sample
matrix_u = -1.0 * torch.log(-1.0 * torch.log(sample))
gumbel_log_probs = log_probs + matrix_u
max_val, max_ids = torch.max(gumbel_log_probs, dim=-1, keepdim=True)
return max_ids
def repeat_state(self, state, batch_size, times):
new_s = state.repeat(1, 1, times)
return new_s.view(-1, batch_size * times, self.hidden_size)
def forward(self, *args, **kwargs):
raise NotImplementedError()
class EncoderRNN(BaseRNN):
r"""
Applies a multi-layer RNN to an input sequence.
Args:
vocab_size (int): size of the vocabulary
max_len (int): a maximum allowed length for the sequence to be processed
hidden_size (int): the number of features in the hidden state `h`
input_dropout_p (float, optional): dropout probability for the input sequence (default: 0)
dropout_p (float, optional): dropout probability for the output sequence (default: 0)
n_layers (int, optional): number of recurrent layers (default: 1)
rnn_cell (str, optional): type of RNN cell (default: gru)
variable_lengths (bool, optional): if use variable length RNN (default: False)
Inputs: inputs, input_lengths
- **inputs**: list of sequences, whose length is the batch size and within which each sequence is a list of token IDs.
- **input_lengths** (list of int, optional): list that contains the lengths of sequences
in the mini-batch, it must be provided when using variable length RNN (default: `None`)
Outputs: output, hidden
- **output** (batch, seq_len, hidden_size): tensor containing the encoded features of the input sequence
- **hidden** (num_layers * num_directions, batch, hidden_size): tensor containing the features in the hidden state `h`
Examples::
>>> encoder = EncoderRNN(input_vocab, max_seq_length, hidden_size)
>>> output, hidden = encoder(input)
"""
def __init__(self, input_size, hidden_size,
input_dropout_p=0, dropout_p=0,
n_layers=1, rnn_cell='gru',
variable_lengths=False, bidirection=False):
super(EncoderRNN, self).__init__(-1, input_size, hidden_size,
input_dropout_p, dropout_p, n_layers,
rnn_cell, bidirection)
self.variable_lengths = variable_lengths
self.output_size = hidden_size*2 if bidirection else hidden_size
def forward(self, input_var, input_lengths=None, init_state=None):
"""
Applies a multi-layer RNN to an input sequence.
Args:
input_var (batch, seq_len, embedding size): tensor containing the features of the input sequence.
input_lengths (list of int, optional): A list that contains the lengths of sequences
in the mini-batch
Returns: output, hidden
- **output** (batch, seq_len, hidden_size): variable containing the encoded features of the input sequence
- **hidden** (num_layers * num_directions, batch, hidden_size): variable containing the features in the hidden state h
"""
embedded = self.input_dropout(input_var)
if self.variable_lengths:
embedded = nn.utils.rnn.pack_padded_sequence(embedded,
input_lengths,
batch_first=True)
if init_state is not None:
output, hidden = self.rnn(embedded, init_state)
else:
output, hidden = self.rnn(embedded)
if self.variable_lengths:
output, _ = nn.utils.rnn.pad_packed_sequence(output,
batch_first=True)
return output, hidden
class RnnUttEncoder(nn.Module):
def __init__(self, utt_cell_size, dropout,
rnn_cell='gru', bidirection=True, use_attn=False,
embedding=None, vocab_size=None, embed_dim=None,
feat_size=0):
super(RnnUttEncoder, self).__init__()
self.bidirection = bidirection
self.utt_cell_size = utt_cell_size
if embedding is None:
self.embed_size = embed_dim
self.embedding = nn.Embedding(vocab_size, embed_dim)
else:
self.embedding = embedding
self.embed_size = embedding.embedding_dim
self.rnn = EncoderRNN(self.embed_size+feat_size,
utt_cell_size, 0.0, dropout,
rnn_cell=rnn_cell, variable_lengths=False,
bidirection=bidirection)
self.multipler = 2 if bidirection else 1
self.output_size = self.utt_cell_size * self.multipler
self.use_attn = use_attn
self.feat_size = feat_size
if use_attn:
self.key_w = nn.Linear(self.utt_cell_size*self.multipler,
self.utt_cell_size)
self.query = nn.Linear(self.utt_cell_size, 1)
def forward(self, utterances, feats=None, init_state=None, return_all=False):
batch_size = int(utterances.size()[0])
max_ctx_lens = int(utterances.size()[1])
max_utt_len = int(utterances.size()[2])
# repeat the init state
if init_state is not None:
init_state = init_state.repeat(1, max_ctx_lens, 1)
# get word embeddings
flat_words = utterances.view(-1, max_utt_len)
words_embeded = self.embedding(flat_words)
if feats is not None:
flat_feats = feats.view(-1, 1)
flat_feats = flat_feats.unsqueeze(1).repeat(1, max_utt_len, 1)
words_embeded = torch.cat([words_embeded, flat_feats], dim=2)
enc_outs, enc_last = self.rnn(words_embeded, init_state=init_state)
if self.use_attn: # weighted add enc_outs, whose weights are calculated by attention...
fc1 = torch.tanh(self.key_w(enc_outs))
attn = self.query(fc1).squeeze(2)
attn = F.softmax(attn, attn.dim()-1).unsqueeze(2)
utt_embedded = attn * enc_outs
utt_embedded = torch.sum(utt_embedded, dim=1)
else:
attn = None
utt_embedded = enc_last.transpose(0, 1).contiguous()
utt_embedded = utt_embedded.view(-1, self.output_size)
utt_embedded = utt_embedded.view(batch_size, max_ctx_lens, self.output_size)
if return_all:
return utt_embedded, enc_outs, enc_last, attn
else:
return utt_embedded
##------------------------------------------------------------------------------------------------------------------##
class RNNVAE(nn.Module):
def __init__(self, args, rev_vocab, vocab_size=10000,
enc_word_dim=200,
enc_h_dim=512,
enc_num_layers=1,
dec_word_dim=200,
dec_h_dim=512,
dec_num_layers=1,
dec_dropout=0.3,
latent_dim=32,
max_sequence_length=40):
super(RNNVAE, self).__init__()
self.args = args
self.enc_h_dim = enc_h_dim
self.enc_num_layers = enc_num_layers
self.dec_h_dim = dec_h_dim
self.dec_num_layers = dec_num_layers
self.embedding_size = dec_word_dim
self.dropout = dec_dropout
self.latent_dim = latent_dim
self.max_sequence_length = max_sequence_length
self.vocab_size = vocab_size
self.rev_vocab = rev_vocab
# context hyperparameters
self.ctx_embed_size = 200
self.utt_cell_size = 256
self.ctx_dropout = 0.3
self.utt_type = 'attn_rnn'
self.ctx_cell_size = 512
self.ctx_num_layer = 1
self.rnn_cell = 'gru'
self.fix_batch = False
self.ctx_encoding_dim = dec_h_dim
# encoder
self.enc_word_vecs = nn.Embedding(vocab_size, enc_word_dim)
self.enc_latent_linear_mean = nn.Linear(enc_h_dim, latent_dim)
self.enc_latent_linear_logvar = nn.Linear(enc_h_dim, latent_dim)
self.enc_rnn = nn.LSTM(enc_word_dim, enc_h_dim, num_layers=enc_num_layers,
batch_first=True)
self.enc = nn.ModuleList([self.enc_word_vecs, self.enc_rnn,
self.enc_latent_linear_mean, self.enc_latent_linear_logvar])
# decoder
self.dec_word_vecs = nn.Embedding(vocab_size, dec_word_dim)
dec_input_size = dec_word_dim
dec_input_size += latent_dim
self.dec_rnn = nn.LSTM(dec_input_size, dec_h_dim, num_layers=dec_num_layers,
batch_first=True)
self.dec_linear = nn.Sequential(*[nn.Linear(dec_h_dim, vocab_size),
nn.LogSoftmax(dim=-1)])
self.dec = nn.ModuleList([self.dec_word_vecs, self.dec_rnn, self.dec_linear])
# decoder hidden state init
if latent_dim > 0:
self.latent_hidden_linear_h = nn.Linear(latent_dim, dec_h_dim)
self.latent_hidden_linear_c = nn.Linear(latent_dim, dec_h_dim)
self.dec.append(self.latent_hidden_linear_h)
self.dec.append(self.latent_hidden_linear_c)
# ebm prior
self.prior_dim = self.latent_dim
self.prior_hidden_dim = args.prior_hidden_dim
self.prior_network = nn.Sequential(
nn.Linear(self.prior_dim + self.ctx_encoding_dim, self.prior_hidden_dim),
GELU(),
nn.Linear(self.prior_hidden_dim, self.prior_hidden_dim),
GELU(),
nn.Linear(self.prior_hidden_dim, args.num_cls)
)
# Context Encoder
self.ctx_embedding = nn.Embedding(vocab_size, self.ctx_embed_size,
padding_idx=self.rev_vocab[PAD])
self.utt_encoder = RnnUttEncoder(self.utt_cell_size, self.ctx_dropout,
use_attn=self.utt_type == 'attn_rnn',
vocab_size=self.vocab_size,
embedding=self.ctx_embedding)
self.ctx_encoder = EncoderRNN(self.utt_encoder.output_size,
self.ctx_cell_size,
0.0,
self.dropout,
self.ctx_num_layer,
self.rnn_cell,
variable_lengths=self.fix_batch)
self.q_zx_mlp = nn.Sequential(
nn.Linear(2 * dec_h_dim, self.ctx_encoding_dim),
nn.ReLU()
) # TODO (bp): better design?
self.ctx_proj_dec_input = nn.Sequential(
nn.Linear(self.ctx_encoding_dim, dec_input_size)
)
def ebm_prior(self, z, ctx_encoding, cls_output=False, temperature=1.):
assert len(z.size()) == 2
assert len(ctx_encoding.size()) == 2
z = torch.cat((z, ctx_encoding.detach().clone()), dim=-1)
if cls_output:
return self.prior_network(z)
else:
return temperature * (self.prior_network(z.squeeze()) / temperature).logsumexp(dim=1)
def q_zx_forward(self, response_encoding, ctx_encoding):
assert len(response_encoding.size()) == 2
assert len(ctx_encoding.size()) == 2
resp_ctx_encoding = torch.cat((response_encoding, ctx_encoding), dim=-1)
encoding = self.q_zx_mlp(resp_ctx_encoding)
mean = self.enc_latent_linear_mean(encoding)
log_var = self.enc_latent_linear_logvar(encoding)
return mean, log_var
def context_encoding(self, ctx_utts, ctx_lens):
c_inputs = self.utt_encoder(ctx_utts)
c_outs, c_last = self.ctx_encoder(c_inputs, ctx_lens)
c_last = c_last.squeeze(0)
return c_last
def compute_mi(self, ctx_encoding, z=None, mu=None, log_var=None, n=10, eps=1e-15):
if z is None:
assert mu is not None and log_var is not None
assert len(mu.size()) == 2 and len(log_var.size()) == 2 and len(ctx_encoding.size()) == 2
mu = mu.repeat(n, 1)
log_var = log_var.repeat(n, 1)
ctx_encoding = ctx_encoding.repeat(n, 1)
z = self.sample_amortized_posterior_sample(mu, log_var, sample=True)
z = z.squeeze()
assert len(z.size()) == 2
batch_size = z.size(0)
log_p_y_z = F.log_softmax(self.ebm_prior(z, ctx_encoding, cls_output=True), dim=-1)
p_y_z = torch.exp(log_p_y_z)
# H(y)
log_p_y = torch.log(torch.mean(p_y_z, dim=0) + eps)
H_y = - torch.sum(torch.exp(log_p_y) * log_p_y)
# H(y|z)
H_y_z = - torch.sum(log_p_y_z * p_y_z) / batch_size
mi = H_y - H_y_z
return mi
def encoder(self, x, args):
word_vecs = self.enc_word_vecs(x)
h0 = torch.zeros(self.enc_num_layers, word_vecs.size(0), self.enc_h_dim).type_as(word_vecs.data)
c0 = torch.zeros(self.enc_num_layers, word_vecs.size(0), self.enc_h_dim).type_as(word_vecs.data)
enc_h_states, _ = self.enc_rnn(word_vecs, (h0, c0))
enc_h_states_last = enc_h_states[:, -1]
# mean = self.enc_latent_linear_mean(enc_h_states_last)
# logvar = self.enc_latent_linear_logvar(enc_h_states_last)
return enc_h_states_last
def sample_amortized_posterior_sample(self, mean, logvar, z=None, sample=True):
if sample:
std = logvar.mul(0.5).exp()
if z is None:
z = torch.cuda.FloatTensor(std.size()).normal_(0, 1)
return z.mul(std) + mean
else:
return mean
def infer_prior_z(self, z, ctx_encoding, args, n_steps=0, verbose=False, y=None):
z_prior_grads_norm = []
if n_steps < args.z_n_iters_prior:
_n_steps = args.z_n_iters_prior
else:
_n_steps = n_steps
for i in range(_n_steps):
z = z.detach().clone().requires_grad_(True)
assert z.grad is None
if y is None:
f = self.ebm_prior(z, ctx_encoding)
else:
f = self.ebm_prior(z, ctx_encoding, cls_output=True)[range(z.size(0)), y]
f = f.sum()
z_grad = torch.autograd.grad(-f, z)[0]
_z_grad = z_grad.detach().clone()
if args.ref_dist is 'gaussian':
z = z - 0.5 * args.prior_step_size * args.prior_step_size * (z_grad + z / (args.ref_sigma * args.ref_sigma))
else:
z = z - 0.5 * args.prior_step_size * args.prior_step_size * z_grad
if args.z_prior_with_noise:
z += args.prior_step_size * torch.randn_like(z)
z_prior_grads_norm.append(torch.norm(_z_grad, dim=1).mean().cpu().numpy())
if (i % 5 == 0 or i == _n_steps - 1) and verbose:
logger.info('Langevin prior {:3d}/{:3d}: energy={:8.3f}'.format(i+1, _n_steps, -f.item()))
z = z.detach().clone()
return z, z_prior_grads_norm
def infer_z(self, z, sent, beta=1., step_size=0.8, training=True, dropout=0.2):
args = self.args
target = sent.detach().clone()
target = target[:, 1:]
z_f_grads_norm = []
z_nll_grads_norm = []
for i in range(args.z_n_iters):
# z = torch.autograd.Variable(z.detach().clone(), requires_grad=True)
z = z.detach().clone()
z.requires_grad = True
assert z.grad is None
logp = self.decoder(sent, z, training=training, dropout=dropout) # TODO: turn off dropout in inference?
logp = logp.view(-1, logp.size(2))
nll = F.nll_loss(logp, target.reshape(-1), reduction='sum', ignore_index=0)
f = self.ebm_prior(z).sum()
z_grad_f = torch.autograd.grad(-f, z)[0]
z_grad_nll = torch.autograd.grad(nll, z)[0]
_z_grad_f = z_grad_f.detach().clone()
_z_grad_nll = z_grad_nll.detach().clone()
if args.ref_dist is 'gaussian':
z = z - 0.5 * step_size * step_size * (z_grad_nll + beta * z_grad_f + beta * z / (args.ref_sigma * args.ref_sigma))
else:
z = z - 0.5 * step_size * step_size * (z_grad_nll + beta * z_grad_f)
if args.z_with_noise:
z += step_size * torch.randn_like(z)
z_f_grads_norm.append(torch.norm(_z_grad_f, dim=1).mean().cpu().numpy())
z_nll_grads_norm.append(torch.norm(_z_grad_nll, dim=1).mean().cpu().numpy())
z = z.detach().clone()
return z, (z_f_grads_norm, z_nll_grads_norm)
def decoder(self, sent, q_z, ctx_encoding, init_h=True, training=True, dropout=0.2):
self.word_vecs = F.dropout(self.dec_word_vecs(sent[:, :-1]), training=training, p=dropout)
if init_h:
self.h0 = Variable(torch.zeros(self.dec_num_layers, self.word_vecs.size(0), self.dec_h_dim).type_as(self.word_vecs.data), requires_grad=False)
self.c0 = Variable(torch.zeros(self.dec_num_layers, self.word_vecs.size(0), self.dec_h_dim).type_as(self.word_vecs.data), requires_grad=False)
else:
self.h0.data.zero_()
self.c0.data.zero_()
if q_z is not None:
q_z_expand = q_z.unsqueeze(1).expand(self.word_vecs.size(0),
self.word_vecs.size(1), q_z.size(1))
dec_input = torch.cat([self.word_vecs, q_z_expand], 2)
else:
dec_input = self.word_vecs