-
Notifications
You must be signed in to change notification settings - Fork 7
/
train_generator_loop.py
73 lines (60 loc) · 2.29 KB
/
train_generator_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import argparse
import subprocess
from hparams import HP
from itertools import product
from multiprocessing import Pool
def run_exp(hp):
# naming the experiment folder
hp_dict = {name: p for name, p in zip(hp_name, hp)}
if len(tested_hp_names) == 0:
unique_hparam = "default"
else:
unique_hparam = list()
for name in tested_hp_names:
param = hp_dict[name]
if isinstance(param, list):
unique_hparam.append(f"{name}{'+'.join(str(p) for p in param)}")
else:
unique_hparam.append(f"{name}{param}")
unique_hparam = "-".join(unique_hparam)
saveroot = os.path.join(exp_name, unique_hparam)
# formatting atoms
valid_hp_name = list(hp_name)
ind_atoms = valid_hp_name.index("atoms")
if len(hp_dict["atoms"]) == 0:
valid_hp_name.remove("atoms")
hp = hp[:ind_atoms] + hp[ind_atoms+1:]
else:
atoms = " ".join([str(atom) for atom in hp[ind_atoms]])
hp = hp[:ind_atoms] + (atoms,) + hp[ind_atoms+1:]
# formatting dist_args
ind_dist_args = valid_hp_name.index("dist_args")
if len(hp_dict["dist_args"]) == 0:
valid_hp_name.remove("dist_args")
hp = hp[:ind_dist_args] + hp[ind_dist_args + 1:]
else:
dist_args = " ".join([str(dist_arg) for dist_arg in hp[ind_dist_args]])
hp = hp[:ind_dist_args] + (dist_args,) + hp[ind_dist_args + 1:]
args = (
" ".join(f"--{name} {param}" for name, param in zip(valid_hp_name, hp))
+ f" --saveroot={saveroot}"
)
cmd = f"python train_generator.py {args}"
_ = subprocess.call(cmd, shell=True)
print(cmd)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--exp_name", type=str, default="test_loop")
parser.add_argument("--num_workers", type=int, default=1, help="Number of cores")
arguments = parser.parse_args()
exp_name = arguments.exp_name
hp_name = HP.keys()
hp_grid = HP.values()
tested_hp_names = list()
for n, g in zip(hp_name, hp_grid):
if len(g) > 1:
tested_hp_names.append(n)
all_hps = product(*hp_grid)
pool = Pool(arguments.num_workers) # Create a multiprocessing Pool
pool.map(run_exp, all_hps) # process data_inputs iterable with pool