-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbibliography.bib
117 lines (109 loc) · 3.63 KB
/
bibliography.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
@article{diciccio1996,
author = "DiCiccio, Thomas J. and Efron, Bradley",
doi = "10.1214/ss/1032280214",
fjournal = "Statistical Science",
journal = "Statist. Sci.",
month = "09",
number = "3",
pages = "189--228",
publisher = "The Institute of Mathematical Statistics",
title = "Bootstrap confidence intervals",
url = "https://doi.org/10.1214/ss/1032280214",
volume = "11",
year = "1996"
}
@article{davison1997,
author = {Davison, Anthony and Hinkley, D.},
year = {1997},
month = {01},
pages = {},
title = {Bootstrap Methods and Their Application},
volume = {94},
journal = {Journal of the American Statistical Association},
doi = {10.2307/1271471}
}
@article{doi:10.1080/01621459.1972.10481279,
author = { David F. Bauer},
title = {Constructing Confidence Sets Using Rank Statistics},
journal = {Journal of the American Statistical Association},
volume = {67},
number = {339},
pages = {687-690},
year = {1972},
publisher = {Taylor & Francis},
doi = {10.1080/01621459.1972.10481279},
URL = {
https://www.tandfonline.com/doi/abs/10.1080/01621459.1972.10481279
},
eprint = {
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1972.10481279
}
}
@article{10.1109/MC.2009.263,
author = {Koren, Yehuda and Bell, Robert and Volinsky, Chris},
title = {Matrix Factorization Techniques for Recommender Systems},
year = {2009},
issue_date = {August 2009},
publisher = {IEEE Computer Society Press},
address = {Washington, DC, USA},
volume = {42},
number = {8},
issn = {0018-9162},
url = {https://doi.org/10.1109/MC.2009.263},
doi = {10.1109/MC.2009.263},
journal = {Computer},
month = aug,
pages = {30–37},
numpages = {8},
keywords = {Matrix factorization, Computational intelligence, Netflix Prize}
}
@inproceedings{10.1145/1401890.1401944,
author = {Koren, Yehuda},
title = {Factorization Meets the Neighborhood: A Multifaceted Collaborative Filtering Model},
year = {2008},
isbn = {9781605581934},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/1401890.1401944},
doi = {10.1145/1401890.1401944},
booktitle = {Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining},
pages = {426–434},
numpages = {9},
keywords = {collaborative filtering, recommender systems},
location = {Las Vegas, Nevada, USA},
series = {KDD ’08}
}
@inproceedings{Recht2011HogwildAL,
title={Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent},
author={Benjamin Recht and Christopher R{\'e} and Stephen J. Wright and Feng Niu},
booktitle={NIPS},
year={2011}
}
@article{rialland2019,
author={Rialland, Emmanuel},
title={HarvardX - PH125.9x Data Science: Capstone - MovieLens},
url = {https://github.com/Emmanuel-R8/HarvardX-Movielens/raw/master/MovieLens.pdf},
year={2019}
}
@book{golub13,
added-at = {2014-06-23T11:34:50.000+0200},
author = {Golub, Gene H. and van Loan, Charles F.},
biburl = {https://www.bibsonomy.org/bibtex/2b9e78e06f69f858cbc968e62c71bb0ef/ytyoun},
edition = {Fourth},
interhash = {a6e3f89a44ff7ccc942c17c894a0dab5},
intrahash = {b9e78e06f69f858cbc968e62c71bb0ef},
isbn = {1421407949 9781421407944},
keywords = {GvL cauchy circulant courant-fischer determinant dft eigenvalues interlacing linear.algebra matrix pseudoinverse textbook},
publisher = {JHU Press},
refid = {824733531},
timestamp = {2017-08-18T08:02:54.000+0200},
title = {Matrix Computations},
url = {http://www.cs.cornell.edu/cv/GVL4/golubandvanloan.htm},
year = 2013
}
@book{irizarry2019,
author = {Irizarry, Rafael A.},
url = {https://rafalab.github.io/dsbook/},
title = {Introduction to Data Science},
year = 2019
}