forked from lixucuhk/Channel-wise-Gated-Res2Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
executable file
·132 lines (107 loc) · 4.98 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy as np
import os
import random
import shutil
import time
import warnings
from collections import defaultdict
from functools import reduce
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from model import Detector
from data_reader.dataset_v1 import SpoofDatsetSystemID
from local import datafiles, prediction
import argparse
def main(pretrained, data_files, model_params, training_params, device):
""" forward pass dev and eval data to trained model """
batch_size = training_params['batch_size']
test_batch_size = training_params['test_batch_size']
# test_batch_size = 128
epochs = training_params['epochs']
start_epoch = training_params['start_epoch']
n_warmup_steps = training_params['n_warmup_steps']
log_interval = training_params['log_interval']
kwargs = {'num_workers': 4, 'pin_memory': True} if device == torch.device('cuda') else {}
# create model
model = Detector(**model_params).to(device)
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('===> Model total parameter: {}'.format(num_params))
# if device == torch.device('cuda') and torch.cuda.device_count() > 1:
# print('multi-gpu')
# model = nn.DataParallel(model).cuda()
if pretrained:
epoch_id = pretrained.split('/')[2].split('_')[0]
pretrained_id = pretrained.split('/')[1]
if os.path.isfile(pretrained):
print("===> loading checkpoint '{}'".format(pretrained))
checkpoint = torch.load(pretrained, map_location=lambda storage, loc: storage) # load for cpu
best_acc1 = checkpoint['best_acc1']
state_dict = checkpoint['state_dict']
single_state_dict = {key.replace('module.', '') : value for key, value in state_dict.items()}
model.load_state_dict(single_state_dict)
print("===> loaded checkpoint '{}' (epoch {})"
.format(pretrained, checkpoint['epoch']))
else:
print("===> no checkpoint found at '{}'".format(pretrained))
exit()
else: raise NameError
# Data loading code (class analysis for multi-class classification only)
val_data = SpoofDatsetSystemID(data_files['dev_scp'], data_files['dev_utt2index'], binary_class=True, isstft=data_files['isstft'])
eval_data = SpoofDatsetSystemID(data_files['eval_19_scp'], data_files['eval_19_utt2index'], binary_class=True, isstft=data_files['isstft'])
val_loader = torch.utils.data.DataLoader(
val_data, batch_size=test_batch_size, shuffle=False, **kwargs)
eval_loader = torch.utils.data.DataLoader(
eval_data, batch_size=test_batch_size, shuffle=False, **kwargs)
os.makedirs(data_files['scoring_dir'], exist_ok=True)
# forward pass for dev
print("===> forward pass for dev set")
score_file_pth = os.path.join(data_files['scoring_dir'], str(pretrained_id) + '-epoch%s-dev_scores.txt' %(epoch_id))
print("===> dev scoring file saved at: '{}'".format(score_file_pth))
prediction.prediction(val_loader, model, device, score_file_pth, data_files['dev_utt2systemID'])
# # forward pass for eval
print("===> forward pass for eval set")
score_file_pth = os.path.join(data_files['scoring_dir'], str(pretrained_id) + '-epoch%s-eval19_scores.txt' %(epoch_id))
print("===> eval scoring file saved at: '{}'".format(score_file_pth))
prediction.prediction(eval_loader, model, device, score_file_pth, data_files['eval_19_utt2systemID'])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data-feats', action='store', type=str, default='pa_spec')
parser.add_argument('--pretrained', action='store', type=str, default=None)
parser.add_argument('--configfile', action='store', type=str)
parser.add_argument('--random-seed', action='store', type=int, default=0)
args = parser.parse_args()
pretrained = args.pretrained
random_seed = args.random_seed
with open(args.configfile) as json_file:
config = json.load(json_file)
data_files = datafiles.data_prepare[args.data_feats]
model_params = config['model_params']
training_params = config['training_params']
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(random_seed)
random.seed(random_seed)
'''
print(run_id)
print(pretrained)
print(data_files)
print(model_params)
print(training_params)
print(device)
exit(0)
'''
main(pretrained, data_files, model_params, training_params, device)