Tools and experiments for code search. Broadly, we consider code synthesis as a search problem: programming is like a kind of biased random walk through edit space. Program synthesis then, can be viewed as is a goal-directed Markov decision process which takes a specification, and applies a sequence of source code transformations to evolve the code towards some specification (e.g. test- or document- driven development). This repository provides tools for evaluating state-of-the-art neural code synthesizers by exploring various tasks, from natural language and code search and completion, optimal transport, to various couplings between code and documentation.
- Probing tools for pretrained neural language models
- Autoregressive code and document completion with masked LMs
- Full-factorial experiments on source code
- Indices for keyword and vector embedding
- Learning to search & grammar induction
- Passive DFA learning from membership
- Keyword/BoW-based query synthesis
- Semantic graph construction
- Keyword-matching edge construction
- Proximity-based graph embedding
- Vector embeddings for code
- Parsing and whole-AST GNN embeddings
- Transformer embeddings of source code snippets
- t-SNE visualization of code embeddings
- Persistent homology of source code embeddings
- Metrics for string, vector and distribution matching
- Kantorovich metric on code embeddings
- Various string distance metrics
- Code-snippet normal form distance
- Ranking metrics: NDCG, MAP@K, MRR
- Comparison of nearest-neighbors
- Tools for mining software repositories
- Supports Google Code, Gitlab, and self-hosted Git instances
- Deduplication with GitHub to avoid dataset biases
- Probabilistic code synthesis with Markov tensors
- Synthetic source code transformations
- Synonym variable renaming
- Dead code introduction
- Loop bounds alteration
- Argument order swapping
- Line order swapping
Code and documentation are complementary and synergistic datatypes. A good programmer should be able to read and write both. We expect a neural programmer to attain fluency in both human and programming languages and evaluate the extent to which SOTA neural language models have mastered this ability. This indicates they have some understanding of intent.
We try our best to take an empirical approach. All experiments are conducted on a relatively diverse sampling of repositories from GitHub containing a mixture of source code and documentation. In those experiments, we use code completion, code search and other downstream tasks to compare the accuracy of pretrained models in constructed scenarios.
First clone this repo and initialize the submodule:
git clone git@github.com:breandan/cstk.git && \
cd cstk && \
git submodule update --init --recursive --remote
The following instructions assume you are running experiments on Compute Canada such as Narval or a similar cluster. Create a virtual environment and install the following dependencies:
module load python/3.8 && \
python3 -m venv . && \
source bin/activate && \
pip install torch==1.5.1 -f https://download.pytorch.org/whl/torch_stable.html && \
pip install transformers
Prefetch the models you wish to evaluate from the login node -- this will require internet access. Each model must provide a fill-mask
pipeline (see here for a list of compatible models).
python scripts/embedding_server.py --model microsoft/codebert-base microsoft/graphcodebert-base dbernsohn/roberta-java huggingface/CodeBERTa-small-v1
Once all models have been downloaded, kill it with Ctrl+C (this step should only need to be run once). Confirm that ~/.cache/huggingface/transformers
is not empty.
Then, make sure the project builds correctly on a login node and download the dataset. This make take a few minutes the first time it is run:
# Load Java through CCEnv when running on Niagara:
# module load CCEnv StdEnv java/17.0.2 && \
module load java/17.0.2 && \
./gradlew build && \
./gradlew cloneRepos
To run an experiment interactively, request a GPU instance like so:
salloc --time 3:0:0 --account=[YOUR_ADVISOR] --gres=gpu:a100:1 --mem=40G
Compute nodes have no internet, so future commands will need to occur offline.
# Default CUDA version may not work, use older version
export LD_LIBRARY_PATH=/cvmfs/soft.computecanada.ca/easybuild/software/2017/Core/cudacore/10.2.89/targets/x86_64-linux/lib/
# Disable 🤗 from phoning home on a Compute node
export TRANSFORMERS_OFFLINE=1
module load python/3.8
# Load Java through CCEnv when running on Niagara:
# module load CCEnv StdEnv java/17.0.2 && \
module load java/17.0.2
source bin/activate
# Use --offline for all Gradle commands on Compute nodes
./gradlew --offline [completeCode] [completeDoc] [varMisuse]
Once you have confirmed the experiment runs smoothly and are ready to submit a longer job, edit niagara_submit.sh
and run one of the following commands to submit it to Slurm, depending on the Compute Canada cluster you want to run it on (Narval has 64 cores, Niagara has 40):
sbatch niagara_submit.sh
sbatch narval_submit.sh
Experiments are mostly self-contained. Each Gradle task corresponds to a single experiment. They have been tested on JDK 21.
The primary artifact and setup instructions for the syntax repair experiments are available on Zenodo.
Other instructions for fetching the raw datasets and running other experiments can be found below.
First, fetch the Break-It-Fix-It and StackOverflow datasets as follows:
export DATASET_DIR=src/main/resources/datasets/python && \
wget -O $DATASET_DIR/stack_overflow.zip https://figshare.com/ndownloader/articles/8244686/versions/1 && \
mkdir -p $DATASET_DIR/stack_overflow && \
unzip $DATASET_DIR/stack_overflow.zip -d $DATASET_DIR/stack_overflow && \
wget -O $DATASET_DIR/bifi.zip https://nlp.stanford.edu/projects/myasu/BIFI/data_minimal.zip && \
mkdir -p $DATASET_DIR/bifi && \
unzip $DATASET_DIR/bifi.zip -d $DATASET_DIR/bifi
The following commands will run the one of the syntax repair experiments:
./gradlew contextualRepair
./gradlew pythonSnippetRepair
./gradlew pythonStatementRepair
./gradlew kotlinSemanticRepair
./gradlew kotlinStatementRepair
Most of these experiments leverage parallelism, so the more CPUs are available, the better. We use AWS EC2 c7a.24xlarge
instances with 96 vCPUs and 192 GB of RAM.
Tokens for accessing the GitHub and GitLab developer APIs should be placed in the .ghtoken
and .gltoken
files, respectively.
The following command is optional and will sample some repositories from GitHub, GitLab, Google Code. To change the repository selection criteria, edit SampleRepos.kt
:
./gradlew sampleRepos
Those repositories may be cloned for evaluation. The following command will download Git repos into the data
directory by default. To change the defaults, edit CloneRepos.kt
:
./gradlew cloneRepos
The following will run the CodeCompletion.kt
demo:
./gradlew completeCode
We use this task to evaluate the impact of source code transformation. If the relative completion accuracy drops after a SCT has been applied, this indicates the model is sensitive to noise.
The following will run the DocCompletion.kt
demo:
./gradlew completeDoc
For example, here are some synthetic documents produced by GraphCodeBERT using greedy autoregressive decoding with a natural language filter.
It is possible to visualize persistent homology. To construct a ÄŚech complex on a set of source code snippets run:
./gradlew nearestNeighbors
This will embed the snippets and construct edges between the nearest neighbors. It's a nice way to visualize code:
CSTK supports a number of source code transformations for studying the effect on neural language models. Some examples are given below.
Synonym renaming is provided by extJWNL. Run the following command:
./gradlew synonymize
Left column is the original, right column is synonymized:
fun VecIndex.knn(v: DoubleArray, i: Int, exact: Boolean = false) = | fun VecIndex.knn(v: DoubleArray, i: Int, involve: Boolean = false) =
if(exact) exactKNNSearch(v, i + 10) | if(involve) involveKNNSearch(v, i + 10)
else findNearest(v, i + 10) | else findNearest(v, i + 10)
.filter { !it.item().embedding.contentEquals(v) } | .filter { !it.item().embedding.contentEquals(v) }
.distinctBy { it.item().toString() }.take(i) | .distinctBy { it.item().toString() }.take(i)
============================================================================================================================================
fun VecIndex.exactKNNSearch(vq: DoubleArray, nearestNeighbors: Int) = | fun VecIndex.exactKNNSearch(vq: DoubleArray, nearestEdge: Int) =
asExactIndex().findNearest(vq, nearestNeighbors) | asExactIndex().findNearest(vq, nearestEdge)
============================================================================================================================================
override fun vector(): DoubleArray = embedding | override fun variable(): DoubleArray = embedding
============================================================================================================================================
override fun dimensions(): Int = embedding.size | override fun mark(): Int = embedding.size
============================================================================================================================================
override fun toString() = loc.getContext(0) | override fun toWithdraw() = loc.getContext(0)
} | }
============================================================================================================================================
fun main() { | fun main() {
buildOrLoadVecIndex() | baseOrDepositVecFurnish()
} | }
============================================================================================================================================
fun buildOrLoadKWIndex( | fun buildOrLoadKWIndex(
indexFile: File = File(DEFAULT_KNNINDEX_FILENAME), | regulateIncriminate: File = File(DEFAULT_KNNINDEX_FILENAME),
rootDir: URI = TEST_DIR | rootDir: URI = TEST_DIR
): KWIndex = | ): KWIndex =
if (!indexFile.exists()) | if (!regulateIncriminate.exists())
rebuildKWIndex(rootDir).apply { serializeTo(indexFile) } | rebuildKWIndex(rootDir).apply { serializeTo(regulateIncriminate) }
else indexFile.deserializeFrom() | else regulateIncriminate.deserializeFrom()
============================================================================================================================================
fun main() { | fun main() {
buildOrLoadKWIndex( | intensifyOrConcernKWFact(
indexFile = File(DEFAULT_KWINDEX_FILENAME), | indexFile = File(DEFAULT_KWINDEX_FILENAME),
rootDir = File("data").toURI() | rootDir = File("data").toURI()
) | )
} | }
============================================================================================================================================
fun String.shuffleLines() = lines().shuffled().joinToString("\n") | fun String.walkDepression() = lines().shuffled().joinToString("\n")
============================================================================================================================================
fun String.swapPlusMinus() = | fun String.goQualityMinus() =
map { if (it == '+') '-' else it }.joinToString("") | map { if (it == '+') '-' else it }.joinToString("")
============================================================================================================================================
fun String.fuzzLoopBoundaries(): String = | fun String.fuzzLoopBoundaries(): String =
replace(Regex("(for|while)(.*)([0-9]+)(.*)")) { match -> | replace(Regex("(for|while)(.*)([0-9]+)(.*)")) { change ->
match.groupValues.let { it[1] + it[2] + | change.groupValues.let { it[1] + it[2] +
(it[3].toInt() + (1..3).random()) + it[4] } | (it[3].toInt() + (1..3).random()) + it[4] }
} | }
============================================================================================================================================
fun String.swapMultilineNoDeps(): String = | fun String.swapMultilineNoDeps(): String =
lines().chunked(2).map { lines -> | reenforce().chunked(2).map { reenforce ->
if (lines.size != 2) return@map lines | if (reenforce.size != 2) return@map reenforce
val (a, b) = lines.first() to lines.last() | val (a, b) = reenforce.first() to reenforce.last()
// Same indentation | // Same indentation
if (a.trim().length - a.length != b.trim().length - b.length) | if (a.trim().length - a.length != b.trim().length - b.length)
return@map listOf(a, b) | return@map listOf(a, b)
============================================================================================================================================
fun String.addDeadCode(): String = | fun String.reckonDeadLabel(): String =
lines().joinToString("\n") { | lines().joinToString("\n") {
if (Math.random() < 0.3) "$it; int deadCode = 2;" else it | if (Math.random() < 0.3) "$it; int deadCode = 2;" else it
} | }
============================================================================================================================================
fun main() = TrainSeq2Seq.runExample() | fun main() = TrainSeq2Seq.contendRepresentation()
============================================================================================================================================
override fun getData(manager: NDManager): Iterable<Batch> = | override fun buyData(manager: NDManager): Iterable<Batch> =
object: Iterable<Batch>, Iterator<Batch> { | object: Iterable<Batch>, Iterator<Batch> {
var maskedInstances: List<MaskedInstance> = createEpochData() | var maskedInstances: List<MaskedInstance> = createEpochData()
var idx: Int = batchSize | var idx: Int = batchSize
============================================================================================================================================
override fun hasNext(): Boolean = idx < maskedInstances.size | override fun bangNext(): Boolean = idx < maskedInstances.size
============================================================================================================================================
override fun prepare(progress: Progress?) { | override fun prepare(progress: Progress?) {
// get all applicable files | // get all applicable files
parsedFiles = TEST_DIR.allFilesRecursively(FILE_EXT) | analyzeAccuse = TEST_DIR.allFilesRecursively(FILE_EXT)
.map { it.toPath() } | .map { it.toPath() }
// read & tokenize them | // read & tokenize them
.map { parseFile(it) } | .map { parseFile(it) }
// determine dictionary | // determine dictionary
dictionary = buildDictionary(countTokens(parsedFiles)) | dictionary = buildDictionary(countTokens(analyzeAccuse))
} | }
============================================================================================================================================
fun getDictionarySize(): Int = dictionary!!.tokens.size | fun channeliseDictionaryFiller(): Int = dictionary!!.tokens.size
============================================================================================================================================
operator fun get(id: Int): String = | operator fun get(id: Int): String =
if (id >= 0 && id < tokens.size) tokens[id] else UNK | if (id >= 0 && id < sign.size) sign[id] else UNK
============================================================================================================================================
operator fun get(token: String): Int = | operator fun get(sign: String): Int =
tokenToId.getOrDefault(token, UNK_ID) | signToId.getOrDefault(sign, UNK_ID)
============================================================================================================================================
fun toTokens(ids: List<Int>): List<String> = ids.map { this[it] } | fun toSymbol(ids: List<Int>): List<String> = ids.map { this[it] }
============================================================================================================================================
fun getRandomToken(rand: Random?): String = | fun getRandomToken(rand: Random?): String =
tokens[rand!!.nextInt(tokens.size)] | disk[rand!!.nextInt(disk.size)]
============================================================================================================================================
private fun batchFromList( | private fun batchFromList(
ndManager: NDManager, | metalTrainer: NDManager,
batchData: List<IntArray> | batchData: List<IntArray>
) = ndManager.create(batchData.toTypedArray()) | ) = metalTrainer.create(batchData.toTypedArray())
============================================================================================================================================
private fun batchFromList( | private fun assemblageFromEnumerate(
ndManager: NDManager, | ndManager: NDManager,
instances: List<MaskedInstance>, | instances: List<MaskedInstance>,
f: (MaskedInstance) -> IntArray | f: (MaskedInstance) -> IntArray
): NDArray = batchFromList(ndManager, instances.map { f(it) }) | ): NDArray = assemblageFromEnumerate(ndManager, instances.map { f(it) })
============================================================================================================================================
fun List<Double>.variance() = | fun List<Double>.variance() =
average().let { mean -> map { (it - mean).pow(2) } }.average() | cypher().let { mean -> map { (it - mean).pow(2) } }.cypher()
============================================================================================================================================
fun euclidDist(f1: DoubleArray, f2: DoubleArray) = | fun geometerDist(f1: DoubleArray, f2: DoubleArray) =
sqrt(f1.zip(f2) { a, b -> (a - b).pow(2) }.sum()) | sqrt(f1.zip(f2) { a, b -> (a - b).pow(2) }.sum())
============================================================================================================================================
fun Array<DoubleArray>.average(): DoubleArray = | fun Array<DoubleArray>.average(): DoubleArray =
fold(DoubleArray(first().size)) { a, b -> | fold(DoubleArray(first().size)) { a, b ->
a.zip(b).map { (i, j) -> i + j }.toDoubleArray() | a.zip(b).map { (i, j) -> i + j }.toBidVesture()
}.map { it / size }.toDoubleArray() | }.map { it / size }.toBidVesture()
============================================================================================================================================
override fun distance(u: DoubleArray, v: DoubleArray) = | override fun distance(u: DoubleArray, v: DoubleArray) =
kantorovich(arrayOf(u), arrayOf(v)) | kantorovich(standOf(u), standOf(v))
} | }
============================================================================================================================================
fun main() { | fun main() {
val (a, b) = Pair(randomMatrix(400, 768), randomMatrix(400, 768)) | val (a, b) = Pair(randomArray(400, 768), randomArray(400, 768))
println(measureTime { println(kantorovich(a, b)) }) | println(measureTime { println(kantorovich(a, b)) })
} | }
============================================================================================================================================
override fun processInput( | override fun processInput(
ctx: TranslatorContext, | ctx: TranslatorContext,
inputs: Array<String> | infix: Array<String>
): NDList = NDList( | ): NDList = NDList(
NDArrays.stack( | NDArrays.stack(
NDList(inputs.map { ctx.ndManager.create(it) }) | NDList(infix.map { ctx.ndManager.create(it) })
) | )
) | )
============================================================================================================================================
override fun getBatchifier(): Batchifier? = null | override fun channelizeBatchifier(): Batchifier? = null
} | }
} | }
============================================================================================================================================
fun main() { | fun main() {
val answer = BertQaInference.predict() | val satisfy = BertQaInference.predict()
BertQaInference.logger.info("Answer: {}", answer) | BertQaInference.logger.info("Answer: {}", satisfy)
} | }
============================================================================================================================================
fun URI.extension() = toString().substringAfterLast('.') | fun URI.extension() = toRemove().substringAfterLast('.')
fun URI.suffix() = toString().substringAfterLast('/') | fun URI.suffix() = toRemove().substringAfterLast('/')
============================================================================================================================================
fun getContext(surroundingLines: Int) = | fun getContext(surroundingPipage: Int) =
uri.allLines().drop((line - surroundingLines).coerceAtLeast(0)) | uri.allLines().drop((line - surroundingPipage).coerceAtLeast(0))
.take(surroundingLines + 1).joinToString("\n") { it.trim() } | .take(surroundingPipage + 1).joinToString("\n") { it.trim() }
============================================================================================================================================
fun fileSummary() = toString().substringBeforeLast(':') | fun impeachSummary() = toString().substringBeforeLast(':')
} | }
============================================================================================================================================
fun MutableGraph.show(filename: String = "temp") = | fun MutableGraph.show(name: String = "temp") =
render(Format.PNG).run { | render(Format.PNG).run {
toFile(File.createTempFile(filename, ".png")) | toFile(File.createTempFile(name, ".png"))
}.show() | }.show()
============================================================================================================================================
fun <T> List<Pair<T, T>>.toLabeledGraph( | fun <T> List<Pair<T, T>>.toLabeledGraph(
toVertex: T.() -> LGVertex = { LGVertex(hashCode().toString()) } | toExtreme: T.() -> LGVertex = { LGVertex(hashCode().toString()) }
): LabeledGraph = | ): LabeledGraph =
fold(first().first.toVertex().graph) { acc, (s, t) -> | fold(first().first.toExtreme().graph) { acc, (s, t) ->
val (v, w) = s.toVertex() to t.toVertex() | val (v, w) = s.toExtreme() to t.toExtreme()
acc + LabeledGraph { v - w; w - v } | acc + LabeledGraph { v - w; w - v }
} | }
============================================================================================================================================
override fun run() { | override fun run() {
printQuery() | availablenessAsk()
graphs.toIntOrNull()?.let { generateGraphs(it) } | graphs.toIntOrNull()?.let { generateGraphs(it) }
} | }
============================================================================================================================================
fun URI.slowGrep(query: String, glob: String = "*"): Sequence<QIC> = | fun URI.slowGrep(ask: String, glob: String = "*"): Sequence<QIC> =
allFilesRecursively().map { it.toPath() } | allFilesRecursively().map { it.toPath() }
.mapNotNull { path -> | .mapNotNull { path ->
path.read()?.let { contents -> | path.read()?.let { contents ->
contents.extractConcordances(".*$query.*") | contents.extractConcordances(".*$ask.*")
.map { (cxt, idx) -> QIC(query, path, cxt, idx) } | .map { (cxt, idx) -> QIC(ask, path, cxt, idx) }
} | }
}.flatten() | }.flatten()
============================================================================================================================================
The Code2Vec.kt extracts an AST from a set of source code snippets:
./gradlew code2Vec
Then it runs a few dozen iterations of GNN message passing and plots the whole-AST embedding in latent space. After dimensional reduction using t-SNE, we obtain the following picture:
Colors represent the graph size. Additional rounds of message passing will result in further separation.
The following command will run the code synthesis demo:
./gradlew codeSynth -P train=[PATH_TO_TRAINING_DATA]
This should produce something like the following text.
3 symbols / symbol:
fun test = projection be
val private fun checkbox(): String {
}
fun box(): String {
as String {
return "test org.rust
fun String {
s
}
va val box(): String {
}
3 symbols / symbol:
class Detection_instring else class_componse_source)
first_list_end]
PVOID),
exception must in not instarted the commension.
tokens = 0
error:
def __name: line, untile_path)
no blockThreader sys.get_paracter)
@rtype: breated line_filenance',
if isinstack if not sequeue_size = node):
3 symbols / symbol, memory = 2:
val ritingConfig.indefaultResponseExtractory.persDsl {
*/
* @see [hasNextContentType) }
fun true): UsertionInjectionInterFunctionse {
fun result() {
action that matcher example.order = ReactiveEntityList() {}
* @see Request
inline fun values() = Selections.assure()
* This bean defining ther the ream()`.
* @see [list)
}
}
fun val set
@Generate lastImperateBridge
* @see String, get method instance fun <reified contain await()
* @params: Map`() {
val mockRequest = Mocked().buil
How quickly can we search for substrings? Useful for learning to search.
./gradlew -q trieSearch --args='--query=<QUERY> [--path=<PATH_TO_INDEX>] [--index=<INDEX_FILE>]'
$ ./gradlew -q trieSearch
Indexing /home/breandan/IdeaProjects/gym-fs
Indexed in 524ms to: cstk.idx
Searching index of size 1227 for [?]=[match]…
0.) [?=match] ….default("[?]")… (…Environment.kt:L21)
Keyword scores: [(toAbsolutePath, 2.0), (Query, 2.0), (find, 2.0)]
Next locations:
0.) [?=toAbsolutePath] …ath = src.[?]().toStrin… (…DiskUtils.kt:L21)
1.) [?=toAbsolutePath] …s.get("").[?]().toStrin… (…Environment.kt:L19)
2.) [?=Query] …// [?] in contex… (…StringUtils.kt:L7)
3.) [?=find] …ex(query).[?]All(this).… (…StringUtils.kt:L36)
1.) [?=match] …val ([?]Start, mat…tchStart, [?]End) =… (…StringUtils.kt:L38)
Keyword scores: [(Regex, 2.0), (matchStart, 2.0), (matchEnd, 2.0)]
Next locations:
0.) [?=Regex] …(3).split([?]("[^\\w']+… (…Environment.kt:L66)
1.) [?=Regex] …[?](query).fi… (…StringUtils.kt:L36)
2.) [?=matchStart] …substring([?], matchEnd…chEnd) to [?]… (…StringUtils.kt:L40)
3.) [?=matchEnd] …tchStart, [?]) to match… (…StringUtils.kt:L40)
2.) [?=match] …substring([?]Start, mat…tchStart, [?]End) to ma…chEnd) to [?]Start… (…StringUtils.kt:L40)
Keyword scores: [(matchStart, 2.0), (matchEnd, 2.0), (first, 3.0)]
Next locations:
0.) [?=matchStart] …val ([?], matchEnd… (…StringUtils.kt:L38)
1.) [?=matchEnd] …tchStart, [?]) =… (…StringUtils.kt:L38)
2.) [?=first] ….offer(it.[?]()) }… (…Environment.kt:L120)
3.) [?=first] …st common [?]. Common k… (…Environment.kt:L77)
4.) [?=first] …it.range.[?].coerceIn(… (…StringUtils.kt:L39)
3.) [?=match] …pairs of [?]ing prefix… (…Environment.kt:L25)
Keyword scores: [(offset, 2.0), (pairs, 2.0), (help, 3.0)]
Next locations:
0.) [?=offset] …val [?]: Int… (…StringUtils.kt:L12)
1.) [?=pairs] …sentence [?] containin… (…BertTrainer.kt:L112)
2.) [?=help] …--index", [?] = "Prebui… (…Environment.kt:L23)
3.) [?=help] …--query", [?] = "Query… (…Environment.kt:L21)
4.) [?=help] …"--path", [?] = "Root d… (…Environment.kt:L18)
Found 4 results in 2.82ms
What do k-nearest neighbors look like?
./gradlew -q knnSearch --args='--query=<QUERY> [--path=<PATH_TO_INDEX>] [--index=<INDEX_FILE>] [--graphs=10]'
$ ./gradlew -q knnSearch --args='--query="const val MAX_GPUS = 1"'
Searching KNN index of size 981 for [?]=[const val MAX_GPUS = 1]…
0.) const val MAX_GPUS = 1
1.) const val MAX_BATCH = 50
2.) const val MAX_VOCAB = 35000
3.) const val EPOCHS = 100000
4.) const val BATCH_SIZE = 24
5.) const val MAX_SEQUENCE_LENGTH = 128
6.) const val CLS = "<cls>"
7.) dataSize.toLong()
8.) const val BERT_EMBEDDING_SIZE = 768
9.) const val UNK = "<unk>"
Fetched nearest neighbors in 1.48674ms
|-----> Original index before reranking by MetricLCS
| |-----> Current index after reranking by MetricLCS
| |
0->0.) const val MAX_GPUS = 1
1->1.) const val MAX_BATCH = 50
14->2.) const val MSK = "<msk>"
3->3.) const val EPOCHS = 100000
4->4.) const val BATCH_SIZE = 24
2->5.) const val MAX_VOCAB = 35000
363->6.) ).default("const val MAX_GPUS = 1")
6->7.) const val CLS = "<cls>"
9->8.) const val UNK = "<unk>"
16->9.) const val SEP = "<sep>"
Reranked nearest neighbors in 1.412775ms
What do nearest neighbors share in common?
./gradlew nearestNeighbors
$ ./gradlew nearestNeighbors
Angle brackets enclose longest common substring up to current result
0.] dataSize.toLong()
0.0] executorService.shutdownNow()
0.1] PolynomialDecayTracker.builder《()》
0.2] .toLabeledGraph《()》
0.3] WarmUpTracker.builder《()》
0.4] .allCodeFragments《()》
0.5] .toTypedArray《()》
0.6] batchData: TrainingListener.BatchData
0.7] .asSequence()
0.8] .shuffled()
0.9] .readText().lines()
0.10] vocabSize
0.11] .toList()
0.12] .distinct()
0.13] PaddingStackBatchifier.builder()
0.14] return trainer.trainingResult
0.15] Adam.builder()
0.16] return jfsRoot
0.17] createOrLoadModel()
0.18] sentenceA = otherA
0.19] const val MAX_GPUS = 1
1.] .toLabeledGraph()
1.0] .toTypedArray()
1.1] 《.to》List()
1.2] .asSequence《()》
1.3] .allCodeFragments《()》
1.4] .renderVKG《()》
1.5] .shuffled《()》
1.6] .distinct《()》
1.7] dataSize.toLong《()》
1.8] .readText《()》.lines《()》
1.9] PolynomialDecayTracker.builder《()》
1.10] WarmUpTracker.builder《()》
1.11] .show《()》
1.12] .readText《()》
1.13] Adam.builder《()》
1.14] .allFilesRecursively《()》
1.15] executorService.shutdownNow《()》
1.16] .build《()》
1.17] .first《()》.toDoubleArray《()》
1.18] PaddingStackBatchifier.builder《()》
1.19] .optLimit(100)
2.] .shuffled()
2.0] .distinct()
2.1] .renderVKG《()》
2.2] .toLabeledGraph《()》
2.3] .show《()》
2.4] .toTypedArray《()》
2.5] .toList《()》
2.6] .asSequence《()》
2.7] .allCodeFragments《()》
2.8] .build《()》
2.9] dataSize.toLong《()》
2.10] .readText《()》.lines《()》
2.11] PolynomialDecayTracker.builder《()》
2.12] WarmUpTracker.builder《()》
2.13] .allFilesRecursively《()》
2.14] .first《()》.toDoubleArray《()》
2.15] executorService.shutdownNow《()》
2.16] .readText《()》
2.17] PaddingStackBatchifier.builder《()》
2.18] trainer.metrics = Metrics《()》
2.19] Adam.builder《()》
3.] .toList()
3.0] .toTypedArray()
3.1] 《.to》LabeledGraph()
3.2] .distinct《()》
3.3] .asSequence《()》
3.4] .shuffled《()》
3.5] .readText《()》.lines《()》
3.6] .allCodeFragments《()》
3.7] .show《()》
3.8] .allFilesRecursively《()》
3.9] dataSize.toLong《()》
3.10] .renderVKG《()》
3.11] .readText《()》
3.12] .build《()》
3.13] WarmUpTracker.builder《()》
3.14] .first《()》.toDoubleArray《()》
3.15] PolynomialDecayTracker.builder《()》
3.16] executorService.shutdownNow《()》
3.17] trainer.metrics = Metrics《()》
3.18] Adam.builder《()》
3.19] .optLimit(100)
4.] PolynomialDecayTracker.builder()
4.0] WarmUpTracker.builder()
4.1] PaddingStackBatchifi《er.builder()》
4.2] dataSize.toLong《()》
4.3] TrainBertOnCode.runExample《()》
4.4] executorService.shutdownNow《()》
4.5] trainer.metrics = Metrics《()》
4.6] .shuffled《()》
4.7] .toLabeledGraph《()》
4.8] .toTypedArray《()》
4.9] .distinct《()》
4.10] createOrLoadModel《()》
4.11] Activation.relu(it)
4.12] .renderVKG()
4.13] batchData: TrainingListener.BatchData
4.14] else rebuildIndex()
4.15] .allCodeFragments()
4.16] return jfsRoot
4.17] .asSequence()
4.18] .toList()
4.19] vocabSize
5.] .distinct()
5.0] .shuffled()
5.1] 《.sh》ow()
5.2] .toList《()》
5.3] .toLabeledGraph《()》
5.4] .renderVKG《()》
5.5] .build《()》
5.6] .asSequence《()》
5.7] .toTypedArray《()》
5.8] dataSize.toLong《()》
5.9] .readText《()》.lines《()》
5.10] .allCodeFragments《()》
5.11] PolynomialDecayTracker.builder《()》
5.12] WarmUpTracker.builder《()》
5.13] Adam.builder《()》
5.14] .allFilesRecursively《()》
5.15] .readText《()》
5.16] executorService.shutdownNow《()》
5.17] trainer.metrics = Metrics《()》
5.18] createOrLoadModel《()》
5.19] printQuery《()》
6.] WarmUpTracker.builder()
6.0] PolynomialDecayTracker.builder()
6.1] PaddingStackBatchifi《er.builder()》
6.2] TrainBertOnCode.runExample《()》
6.3] dataSize.toLong《()》
6.4] trainer.metrics = Metrics《()》
6.5] executorService.shutdownNow《()》
6.6] .shuffled《()》
6.7] .toTypedArray《()》
6.8] .distinct《()》
6.9] .toLabeledGraph《()》
6.10] Activation.relu(it)
6.11] .toList()
6.12] .renderVKG()
6.13] else rebuildIndex()
6.14] .asSequence()
6.15] createOrLoadModel()
6.16] batchData: TrainingListener.BatchData
6.17] .allCodeFragments()
6.18] .readText().lines()
6.19] TextTerminator()
7.] .toTypedArray()
7.0] .toLabeledGraph()
7.1] 《.toL》ist()
7.2] .asSequence《()》
7.3] .shuffled《()》
7.4] .allCodeFragments《()》
7.5] dataSize.toLong《()》
7.6] .distinct《()》
7.7] .renderVKG《()》
7.8] WarmUpTracker.builder《()》
7.9] PolynomialDecayTracker.builder《()》
7.10] .readText《()》.lines《()》
7.11] .allFilesRecursively《()》
7.12] .first《()》.toDoubleArray《()》
7.13] .readText《()》
7.14] executorService.shutdownNow《()》
7.15] .show《()》
7.16] PaddingStackBatchifier.builder《()》
7.17] trainer.metrics = Metrics《()》
7.18] .build《()》
7.19] TrainBertOnCode.runExample《()》
8.] const val MAX_BATCH = 50
8.0] const val MAX_VOCAB = 35000
8.1] 《const val MAX_》GPUS = 1
8.2] 《const val 》EPOCHS = 100000
8.3] 《const val 》MAX_SEQUENCE_LENGTH = 128
8.4] 《const val 》BATCH_SIZE = 24
8.5] 《const val 》CLS = "<cls>"
8.6] 《const val 》UNK = "<unk>"
8.7] 《const val 》BERT_EMBEDDING_SIZE = 768
8.8] dataSize.toL《on》g()
8.9] val targetEmbedding =
8.10] const val MSK = "<msk>"
8.11] val use = UniversalSentenceEncoder
8.12] sentenceA = otherA
8.13] const val CODEBERT_CLS_TOKEN = "<s>"
8.14] const val SEP = "<sep>"
8.15] val d2vecs = vectors.reduceDim()
8.16] return jfsRoot
8.17] val range = 0..length
8.18] val (matchStart, matchEnd) =
8.19] PolynomialDecayTracker.builder()
9.] .renderVKG()
9.0] .toLabeledGraph()
9.1] .shuff《led》()
9.2] .allCodeFragments《()》
9.3] .distinct《()》
9.4] .show《()》
9.5] .toTypedArray《()》
9.6] .toList《()》
9.7] .readText《()》.lines《()》
9.8] .build《()》
9.9] dataSize.toLong《()》
9.10] PolynomialDecayTracker.builder《()》
9.11] WarmUpTracker.builder《()》
9.12] .readText《()》
9.13] .asSequence《()》
9.14] .allFilesRecursively《()》
9.15] Adam.builder《()》
9.16] printQuery《()》
9.17] createOrLoadModel《()》
9.18] TrainBertOnCode.runExample《()》
9.19] PaddingStackBatchifier.builder《()》
10.] .readText().lines()
10.0] .readText()
10.1] .toLabeledGraph《()》
10.2] .toList《()》
10.3] dataSize.toLong《()》
10.4] .shuffled《()》
10.5] .allCodeFragments《()》
10.6] path.readText《()》.lines《()》
10.7] .distinct《()》
10.8] .renderVKG《()》
10.9] .toTypedArray《()》
10.10] .allFilesRecursively《()》
10.11] .asSequence《()》
10.12] .show《()》
10.13] executorService.shutdownNow《()》
10.14] WarmUpTracker.builder《()》
10.15] Adam.builder《()》
10.16] .build《()》
10.17] PolynomialDecayTracker.builder《()》
10.18] .first《()》.toDoubleArray《()》
10.19] trainer.metrics = Metrics《()》
11.] .show()
11.0] .build()
11.1] .distinct《()》
11.2] .shuffled《()》
11.3] .toList《()》
11.4] Adam.builder《()》
11.5] .renderVKG《()》
11.6] printQuery《()》
11.7] .toLabeledGraph《()》
11.8] TextTerminator《()》
11.9] .readText《()》
11.10] println《()》
11.11] createOrLoadModel《()》
11.12] .readText《()》.lines《()》
11.13] else rebuildIndex《()》
11.14] .toTypedArray《()》
11.15] WarmUpTracker.builder《()》
11.16] dataSize.toLong《()》
11.17] .allCodeFragments《()》
11.18] PolynomialDecayTracker.builder《()》
11.19] }.toList《()》
12.] const val MAX_VOCAB = 35000
12.0] const val MAX_BATCH = 50
12.1] 《const val 》EPOCHS = 100000
12.2] 《const val 》MAX_GPUS = 1
12.3] 《const val 》MAX_SEQUENCE_LENGTH = 128
12.4] 《const val 》CLS = "<cls>"
12.5] 《const val 》BATCH_SIZE = 24
12.6] 《const val 》UNK = "<unk>"
12.7] 《const val 》MSK = "<msk>"
12.8] 《const val 》BERT_EMBEDDING_SIZE = 768
12.9] dataSize.toL《on》g()
12.10] val d2vecs = vectors.reduceDim()
12.11] const val SEP = "<sep>"
12.12] val vocab = SimpleVocabulary.builder()
12.13] val use = UniversalSentenceEncoder
12.14] const val CODEBERT_CLS_TOKEN = "<s>"
12.15] val targetEmbedding =
12.16] sentenceA = otherA
12.17] return jfsRoot
12.18] val r = rand.nextFloat()
12.19] PolynomialDecayTracker.builder()
13.] .allCodeFragments()
13.0] .toLabeledGraph()
13.1] .renderVKG《()》
13.2] .toTypedArray《()》
13.3] .allFilesRecursively《()》
13.4] .toList《()》
13.5] .shuffled《()》
13.6] dataSize.toLong《()》
13.7] .readText《()》.lines《()》
13.8] .asSequence《()》
13.9] .distinct《()》
13.10] PolynomialDecayTracker.builder《()》
13.11] .readText《()》
13.12] WarmUpTracker.builder《()》
13.13] executorService.shutdownNow《()》
13.14] Adam.builder《()》
13.15] .show《()》
13.16] .build《()》
13.17] .optLimit(100)
13.18] .optBatchFirst(true)
13.19] PaddingStackBatchifier.builder()
14.] const val MAX_GPUS = 1
14.0] const val MAX_BATCH = 50
14.1] 《const val MAX_》VOCAB = 35000
14.2] 《const val 》EPOCHS = 100000
14.3] 《const val 》BATCH_SIZE = 24
14.4] 《const val 》MAX_SEQUENCE_LENGTH = 128
14.5] 《const val 》CLS = "<cls>"
14.6] dataSize.toL《on》g()
14.7] c《on》st val BERT_EMBEDDING_SIZE = 768
14.8] c《on》st val UNK = "<unk>"
14.9] c《on》st val CODEBERT_CLS_TOKEN = "<s>"
14.10] val targetEmbedding =
14.11] val use = UniversalSentenceEncoder
14.12] sentenceA = otherA
14.13] const val MSK = "<msk>"
14.14] val (matchStart, matchEnd) =
14.15] const val SEP = "<sep>"
14.16] return jfsRoot
14.17] return trainer.trainingResult
14.18] var numEpochs = 0
14.19] PolynomialDecayTracker.builder()
15.] createOrLoadModel()
15.0] printQuery()
15.1] TextTerminator《()》
15.2] else rebuildIndex《()》
15.3] println《()》
15.4] TrainBertOnCode.runExample《()》
15.5] dataSize.toLong《()》
15.6] PolynomialDecayTracker.builder《()》
15.7] executorService.shutdownNow《()》
15.8] return trainer.trainingResult
15.9] WarmUpTracker.builder()
15.10] }.toList()
15.11] .show()
15.12] PaddingStackBatchifier.builder()
15.13] add(CLS)
15.14] .build()
15.15] Adam.builder()
15.16] vocabSize
15.17] .distinct()
15.18] sentenceA = otherA
15.19] .shuffled()
16.] vocabSize
16.0] return trainer.trainingResult
16.1] 《return 》jfsRoot
16.2] 《return 》dataset
16.3] Adam.builder()
16.4] dataSize.toLong()
16.5] rootDir: Path
16.6] sentenceA = otherA
16.7] val offset: Int
16.8] list: NDList
16.9] batchData: TrainingListener.BatchData
16.10] TextTerminator()
16.11] executorService.shutdownNow()
16.12] PolynomialDecayTracker.builder()
16.13] vocabSize: Long
16.14] createOrLoadModel()
16.15] PunctuationSeparator(),
16.16] TextTruncator(10)
16.17] Batchifier.STACK,
16.18] add(CLS)
16.19] PaddingStackBatchifier.builder()
17.] const val EPOCHS = 100000
17.0] const val MAX_VOCAB = 35000
17.1] 《const val MAX_》BATCH = 50
17.2] 《const val MAX_》GPUS = 1
17.3] 《const val MAX_》SEQUENCE_LENGTH = 128
17.4] 《const val 》CLS = "<cls>"
17.5] 《const val 》BATCH_SIZE = 24
17.6] 《const val 》UNK = "<unk>"
17.7] 《const val 》MSK = "<msk>"
17.8] 《const val 》SEP = "<sep>"
17.9] 《const val 》BERT_EMBEDDING_SIZE = 768
17.10] 《val 》targetEmbedding =
17.11] dataSize.toLong()
17.12] val use = UniversalSentenceEncoder
17.13] const val CODEBERT_CLS_TOKEN = "<s>"
17.14] val d2vecs = vectors.reduceDim()
17.15] val vocab = SimpleVocabulary.builder()
17.16] var consecutive = true
17.17] val knn = knnIndex.findNearest(v, topK)
17.18] sentenceA = otherA
17.19] val r = rand.nextFloat()
18.] Adam.builder()
18.0] return dataset
18.1] .show()
18.2] vocabSize
18.3] TextTerminator()
18.4] dataSize.toLong()
18.5] return trainer.trainingResult
18.6] .build()
18.7] .distinct()
18.8] .toLabeledGraph()
18.9] add(SEP)
18.10] createOrLoadModel()
18.11] PolynomialDecayTracker.builder()
18.12] consecutive = false
18.13] executorService.shutdownNow()
18.14] val offset: Int
18.15] .shuffled()
18.16] .readText().lines()
18.17] WarmUpTracker.builder()
18.18] } else {
18.19] add(CLS)
19.] package edu.mcgill.cstk.djl
19.0] package edu.mcgill.cstk.experiments
19.1] 《package edu.mcgill.cstk.》inference
19.2] 《package edu.mcgill.cstk.》disk
19.3] 《package edu.mcgill.cstk》
19.4] import jetbrains.letsPlot.labe《l.g》gtitle
19.5] import edu.mcgil《l.g》ymfs.disk.*
19.6] import com《.g》ithub.jelmerk.knn.SearchResult
19.7] import jetbrains.datalore.plot.*
19.8] import ai.hypergraph.kaliningraph.*
19.9] import jetbrains.letsPlot.intern.*
19.10] import com.jujutsu.tsne.TSne
19.11] import com.jujutsu.utils.TSneUtils
19.12] import org.nield.kotlinstatistics.variance
19.13] import com.github.jelmerk.knn.*
19.14] import jetbrains.letsPlot.*
19.15] import ai.hypergraph.kaliningraph.show
19.16] import guru.nidi.graphviz.*
19.17] import kotlin.math.pow
19.18] import kotlin.system.measureTimeMillis
19.19] import org.slf4j.LoggerFactory
Provides a mock API for filesystem interactions.
Stores BPE-compressed files in memory.
Gives an agent the ability to selectively read and query files.
Interface:
Path.read(start, end)
- Returns file chunk at offset.Path.grep(query)
- Returns offsets matching query.Path.knn(code)
- Fetches similar code snippets to the query.
If, for some reason Gradle does not work on Compute Canada, you can build a fat JAR locally then deploy.
To run the CPU experiments:
./niagara_deploy.exp && ./niagara_submit.exp
To run the GPU experiments:
./gradlew shadowJar && scp build/libs/gym-fs-fat-1.0-SNAPSHOT.jar breandan@niagara.computecanada.ca:/home/b/bengioy/breandan/cstk
salloc -t 3:0:0 --account=def-jinguo --gres=gpu:v100:1 --mem=32G --cpus-per-task=24
To start, must have Java and Python with PyTorch and HuggingFace:
export TRANSFORMERS_OFFLINE=1 && \
module load python/3.8 && \
# Load Java through CCEnv when running on Niagara:
# module load CCEnv StdEnv java/17.0.2 && \
module load java/17.0.2 && \
source venv/bin/activate && \
python scripts/embedding_server.py --model microsoft/graphcodebert-base --offline & && \
java -jar gym-fs-fat-1.0-SNAPSHOT.jar 2>&1 | tee /scratch/b/bengioy/breandan/log.txt
Some research questions which this work attempts to explore:
- Can we learn to synthesize a search query which is likely to retrieve results containing relevant information to the local context
- Do good queries contain keywords from the surrounding context? What information sources are the most salient?
- Can we learn a highly compressed index of all artifacts on GitHub for fast offline lookups with just-in-time retrieval?
- What if when we allowed the user to configure the search settings?
- Clone type (I/II/III/IV)
- File extension filter
- Source code context
- Edge construction
- Ranking metric
- How do we clearly communicate search result alignment? Concordance++
- What information can be extracted from the search results? Can we adapt information from results into the local context, to suggest e.g. naming, code fixes?
- Concurrent Trees - For fast indexing and retrieval.
- HNSW - Java library for approximate nearest neighbors search using Hierarchical Navigable Small World graphs
- java-string-similarity - Implementation of various string similarity and distance algorithms
- Commons VFS - Virtual file system for compressed files
- LearnLib - Java library for automata learning algorithms
- OR-Tools - Software suite for combinatorial optimization
- KeyBERT - Minimal keyword extraction using BERT
- GitHub Java API - Fluent DSL for GitHub queries
- GitLab4J API - Fluent DSL for GitLab queries
- HtmlUnit - Simulates a headless browser
- Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs, Malkov & Yashunin (2015
- BERT-kNN: Adding a kNN Search Component to Pretrained Language Models for Better QA, Kassner & Schutze (2020)
- AutoKG: Constructing Virtual Knowledge Graphs from Unstructured Documents for Question Answering, Yu et al. (2021)
- Graph Optimal Transport for Cross-Domain Alignment, Chen et al. (2021)
- TextRank: Bringing Order into Texts, Mihalcea and Tarau (2004)
- From word embeddings to document distances (WMD), Kusner et al. (2015)
- Example-Centric Programming: Integrating Web Search into the Development Environment, Brandt et al. (2009)
- Exemplar: A source code search engine for finding highly relevant applications, McMillan et al. (2012)
- Symbolic Automata for Static Specification Mining [slides], Peleg et al. (2013)
- Symbolic Automata, D'Antoni et al.
- Extracting Automata from Recurrent Neural Networks Using Queries and Counterexamples, Weiss et al. (2018)
- Enumerating Regular Expressions and Their Languages, Lee & Shallit (2004)
- BLUE*: a Blue-Fringe Procedure for Learning DFA with Noisy Data, Sebban et al. (2004)
- Learning Regular Sets from Queries and Counterexamples, Angluin (1987)
- Learning to Rank with Nonsmooth Cost Functions, Burges et al. (2018)
- Learning to rank papers
- CodeSearchNet
- OpenMatch
- Steps for Evaluating Search Algorithms (e.g. MAP, DCG)