-
Notifications
You must be signed in to change notification settings - Fork 160
/
real_time_processing_onnx.py
106 lines (95 loc) · 3.82 KB
/
real_time_processing_onnx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
"""
This is an example how to implement real time processing of the DTLN ONNX
model in python.
Please change the name of the .wav file at line 49 before running the sript.
For the ONNX runtime call: $ pip install onnxruntime
Author: Nils L. Westhausen (nils.westhausen@uol.de)
Version: 03.07.2020
This code is licensed under the terms of the MIT-license.
"""
import soundfile as sf
import numpy as np
import time
import onnxruntime
##########################
# the values are fixed, if you need other values, you have to retrain.
# The sampling rate of 16k is also fix.
block_len = 512
block_shift = 128
# load models
interpreter_1 = onnxruntime.InferenceSession('./model_1.onnx')
model_input_names_1 = [inp.name for inp in interpreter_1.get_inputs()]
# preallocate input
model_inputs_1 = {
inp.name: np.zeros(
[dim if isinstance(dim, int) else 1 for dim in inp.shape],
dtype=np.float32)
for inp in interpreter_1.get_inputs()}
# load models
interpreter_2 = onnxruntime.InferenceSession('./model_2.onnx')
model_input_names_2 = [inp.name for inp in interpreter_2.get_inputs()]
# preallocate input
model_inputs_2 = {
inp.name: np.zeros(
[dim if isinstance(dim, int) else 1 for dim in inp.shape],
dtype=np.float32)
for inp in interpreter_2.get_inputs()}
# load audio file
audio,fs = sf.read('path/to/your/favorite.wav')
# check for sampling rate
if fs != 16000:
raise ValueError('This model only supports 16k sampling rate.')
# preallocate output audio
out_file = np.zeros((len(audio)))
# create buffer
in_buffer = np.zeros((block_len)).astype('float32')
out_buffer = np.zeros((block_len)).astype('float32')
# calculate number of blocks
num_blocks = (audio.shape[0] - (block_len-block_shift)) // block_shift
# iterate over the number of blcoks
time_array = []
for idx in range(num_blocks):
start_time = time.time()
# shift values and write to buffer
in_buffer[:-block_shift] = in_buffer[block_shift:]
in_buffer[-block_shift:] = audio[idx*block_shift:(idx*block_shift)+block_shift]
# calculate fft of input block
in_block_fft = np.fft.rfft(in_buffer)
in_mag = np.abs(in_block_fft)
in_phase = np.angle(in_block_fft)
# reshape magnitude to input dimensions
in_mag = np.reshape(in_mag, (1,1,-1)).astype('float32')
# set block to input
model_inputs_1[model_input_names_1[0]] = in_mag
# run calculation
model_outputs_1 = interpreter_1.run(None, model_inputs_1)
# get the output of the first block
out_mask = model_outputs_1[0]
# set out states back to input
model_inputs_1[model_input_names_1[1]] = model_outputs_1[1]
# calculate the ifft
estimated_complex = in_mag * out_mask * np.exp(1j * in_phase)
estimated_block = np.fft.irfft(estimated_complex)
# reshape the time domain block
estimated_block = np.reshape(estimated_block, (1,1,-1)).astype('float32')
# set tensors to the second block
# interpreter_2.set_tensor(input_details_1[1]['index'], states_2)
model_inputs_2[model_input_names_2[0]] = estimated_block
# run calculation
model_outputs_2 = interpreter_2.run(None, model_inputs_2)
# get output
out_block = model_outputs_2[0]
# set out states back to input
model_inputs_2[model_input_names_2[1]] = model_outputs_2[1]
# shift values and write to buffer
out_buffer[:-block_shift] = out_buffer[block_shift:]
out_buffer[-block_shift:] = np.zeros((block_shift))
out_buffer += np.squeeze(out_block)
# write block to output file
out_file[idx*block_shift:(idx*block_shift)+block_shift] = out_buffer[:block_shift]
time_array.append(time.time()-start_time)
# write to .wav file
sf.write('out.wav', out_file, fs)
print('Processing Time [ms]:')
print(np.mean(np.stack(time_array))*1000)
print('Processing finished.')